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  As one of the techniques for anomaly detection and future forecasts utilizing time-series 

operating data, there have been a growing number of applications of long short-term memory 
(LSTM), one form of deep learning. LSTM is expected to demonstrate high prediction accuracy 
when actual operating conditions are close to those simulated in training. If they are not, however, 
there is a possibility that the prediction accuracy could decrease significantly. Meanwhile, since 
there has been no means to know whether the predictive results are reliable in conventional LSTM, 
it has not been applied much to fields where a high level of reliability would be required such as 
plant operation control. 

This report will describe the predictive results produced by a deep learning model utilizing 
LSTM developed jointly with Kyushu University, as well as a technique to evaluate its reliability. 

  |1. Introduction 
Machine learning technology, specifically deep learning, has advanced to the extent that 

prediction and judgement can be made even in the kinds of things that “humans cannot make out as
a pattern with clarity”, if there is a large enough amount of training data. In terms of the application
of deep learning, however, unless a large set of “appropriate” training data is available, it ends up
producing erroneous results. There have been several cases reported such as accidents due to false
recognition in autonomous driving(1).  

LSTM, a deep learning model, is a Recurrent Neural Network (RNN) with a recurrent 
mechanism, which as shown in Figure 1 consists of LSTM cells including neurons and their links, 
where the product of each cell’s output and the weight of its links is added in the order of the cell’s
distance to the input to obtain the final value. The weights of individual links and those in LSTM
cells are optimized at the time of training. 

In conventional LSTM training, however, the weights are optimized so that the difference
between the correct value and predictive one should be minimized, and not all LSTM cells are
used. In other words, there is a possibility that some of the weights are left unoptimized at the time
of training. Therefore, depending on the state of neural firing, it is possible that neurons which 
never fired during training could fire in actual operation, resulting in various adverse effects such
as veering far from the predictive results (See Figure 2 which describes LSTM cells as neurons). 

On the other hand, in terms of deep learning in the image processing field, there have been 
several reports concerning the reliability evaluation of models utilizing the neuron coverage (the
number of neurons activated by a set of test inputs) as an index, as well as some research findings
where the prediction accuracy increased by generating a set of test data which would maximize the
coverage and using it to retrain the model. 

This report features a form of deep learning utilizing time-series data (LSTM) and describes 
the verification results of a boiler’s validity as an example by (1) developing a new evaluation
index (coverage) suitable for LSTM, (2) creating a highly-robust model based on the development 
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of an evaluation function utilizing the coverage index, and (3) developing a method of evaluating
the reliability of the predictive results at the time of actual operation. 

 
Figure 1  LSTM model overview  

 
Figure 2  Challenges in the training in deep learning methods 
 

|2. Reliability evaluation method in deep learning 
2.1 Evaluation index for a deep learning model with time-series data 

LSTM has, unlike a regular neural network, a recurrent layer which is a recurrent structure.
In this recurrent structure, there are 2 internal states (Neuron coverage ℎݐ and Cell state coverage ܿݐ
as shown in Figure 3. ℎݐ is a value propagated to the next layer whereas ܿݐ is a value propagated in 
the direction of time on the same layer). Since these 2 types of values affect the neurons firing, we
used them as the indices for the model’s reliability (to see whether the individual weights are
optimized) by evaluating them quantitatively as coverages. 

 
Figure 3  Evaluation index for a deep learning model with time-series data 
 

2.2 Development of an evaluation function considering the coverage index 
When creating a neural network model, we normally make the model learn weights so that it

would minimize the evaluation function consisting of the error between actual measurement value
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and predicted value (the Mean Squared Error (MSE) is commonly used for time-series data). As 
opposed to that, we have developed a new evaluation index which can factor in not only the error,
but also the coverage by adding the evaluation index developed in the previous section as a 
coverage term to the loss function. This would allow no neurons to be left unoptimized at the time
of training—preventing an adverse impact from firing during actual operation—and thereby 
stabilizing the level of accuracy. 

The training is illustrated in Figure 4. 

 
Figure 4  Training method considering the coverage 
 

2.3 Reliability evaluation of predictive results based on the coverage index 
Generally, machine-learning models including deep learning have a high possibility of the

prediction accuracy decreasing significantly when the input is outside of the range the model has
learned. Therefore, it would be too risky to utilize the predictive results for control purposes. 
Accordingly, we have developed a method for evaluating the reliability of predicted values as well.
Specifically, since the coverage index allows us to determine whether the individual neurons have
fired, as shown in Figure 5, we evaluate the data distribution at the time of actual operation
quantitatively to see if it is the same as that at the time of training, in accordance with the
difference in the firing patterns at the time of training and actual operation. 

 
Figure 5  Reliability evaluation of the predictive results utilizing the coverage index 
 

|3. Validation of the newly-developed method with a boiler 
There are multiple high-pressure soot blowers inside a boiler and there is a need to optimize

their operating intervals. The restriction to the optimal interval is the heat exchanger’s outlet
temperature, which needs to be within the threshold range. Therefore, we aim to determine the
optimal operating interval by predicting the future outlet temperature utilizing our new deep 
learning method. From an operational planning aspect, the outlet gas temperature needs to be
predicted 2 days ahead, and the activation of soot blowers is scheduled based on the predicted
value. Therefore, it is necessary to evaluate the reliability of the predicted value before the true 
value is available. Furthermore, as soot blowers are greatly affected by the fuel properties, the
prediction needs to be both highly accurate and highly reliable. 

We validated this method utilizing operating data from 3 different periods as shown in 



Mitsubishi Heavy Industries Technical Review Vol. 58 No. 1 (March 2021) 
 4 

 

Figure 6. The validating conditions include a total of 11 input variables consisting of the boiler
inlet temperature, outlet temperature and accumulated down-time (reset to 0 when restarting) of 9 
high-pressure soot blowers (SB). The objective variable is set as the outlet temperature 2 days later
and the data sampling time is 10 minutes. This deep learning model is structured to have one
LSTM layer as the hidden layer (50 units). One of the 3 data sets in Figure 6 is designated as 
training data and other 2 are validation data. 

 
Figure 6  Actual measurement data of boiler gas temperature 
 

Firstly, Figure 7 shows the training results in accordance with the conventional method. The
model is constructed to match the training data with accuracy. The neuron coverage is 0.54,
however, and from this it can be seen that many neurons do not fire. Furthermore, in terms of the 
operation data close to the training data (Validation data 1), the coverage increases, which indicates
that the neurons that did not fire at the time of training do fire. Therefore, we can confirm that the
Root Mean Square Error (RMSE) increases in some parts. With respect to the operation data 
outside the training range (Validation data 2 where the outlet temperature is higher than that at the
time of training), the coverage increases even further, meaning a significant decrease in the
prediction accuracy. Accordingly, we have confirmed that, due to the weights unoptimized at the
time of training, the accuracy decreases at the time of actual operation. 

 
Figure 7  Coverage evaluation result 
 

Next, the results of training and prediction with the evaluation function in light of the
coverage are shown in Figure 8, from which it can be seen that the neuron coverage at the time of
training is 1, meaning the weights of all the links are optimized. 

Furthermore, the prediction accuracy increases both in Validation data 1 and 2. Especially
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with Validation data 2, we have successfully obtained results showing the RMSE reduced by 28%
from 23.13°C to 6.55°C, which means that the level of accuracy is stabilized. 

Lastly, we will discuss the reliability of the predictive results. Figure 9 shows the reliability 
of the predictive results with Validation data 2, where it can be confirmed that when the prediction
accuracy decreases, so does the reliability. Accordingly, we have confirmed that the reliability 
evaluation would inform us beforehand of the situation where the RMSE increases due to the input
of data outside the range covered by the pre-trained model. 

 
Figure 8  Training results in light of the coverage  

 
Figure 9  Reliability evaluation of the predictive results using the coverage index 
 

|4. Conclusion 
This report has described a method of evaluating pre-trained models utilizing the coverage 

index, as well as a method of evaluating the reliability of the predictive results, with respect to the
deep learning model covering time-series data. These methods would allow the reliability
evaluation of pre-trained models prior to actual operation. Furthermore, the reliability of the 
predictive results according to the input data could be evaluated during actual operation as well,
which would allow practical application of deep learning to fields such as control, where we can
provide high-performance products and services utilizing deep learning as a business. 

In the future, we intend to expand the application of this technology to validation in our
customers’ thermal power plants, remaining life prediction of the spare parts of our overall
products, etc. 
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