特集論文

RPF **焚き循環流動層ボイラの計画と** 運転実績

Design and Operational Performance of RPF Fired Circulating Fluidized Bed Boiler

荒川善久*1	横 式 龍 夫 *²	<mark>坂 井 俊 之</mark> *³
Yoshihisa Arakawa	Tatsuo Yokoshiki	Toshiyuki Sakai
山田一二*4	國 領 繁 光 *⁵	<mark>鳥 居 功</mark> *6
Hitoji Yamada	Shigeharu Kokuryo	Isao Torii

近年,自家用発電ボイラでは資源の有効利用促進と燃料コストを削減する目的で,クリーンな新エネ ルギーとして注目されている RPF などのリサイクル燃料を適用する傾向が増加している.当社は,平成 16年に王子板紙株 大分工場向けに蒸発量200 t/hの RPF 焚き循環流動層ボイラを納入した.本ボイラ は,RPFに含まれる金属アルミニウムがサイクロン内に付着する事象を回避するために,コンバスタ差 圧を最適化して設計された.ボイラ運用においてはサイクロン内への灰付着もなく,排ガス特性(CO, NOx,SOx,ダイオキシン類)に関しても良好な結果を得た.

1.はじめに

我が国においては、1990年代から循環型社会の実 現を目指した環境基本法などの法体系が整備され、3 R(Reduce, Reuse, Recycle)を基本理念とした環 境負荷低減への取り組みが進められている.自家用発 電ボイラ用の燃料についても、従来までは重油、石炭 が主流であったのに対し、近年ではリサイクル燃料で あるRPF(Refuse Paper and Plastic Fuel)が市場に 流通している.RPFは石炭と比較して安価であるこ とから、ボイラ操業における燃料転換のコストメリッ トも見込める.

当社はこれまでに多数の石炭焚き循環流動層 (Circulating Fluidized Bed:以下CFB)ボイラの実 缶納入実績がある⁽¹⁾⁽²⁾.今回は新たにRPFのCFBボ イラにおける燃焼方法を開発し,王子板紙(株)大分 工場向けに蒸発量200 t/hのCFBボイラを納入した. 本報では,開発試験の状況とボイラ運転実績を紹介す る.

2.燃烧试験

2.1 試験目的

RPF 燃料をCFBボイラに適用する場合,燃料中金属アルミニウムのサイクロン等への付着が懸念される.そこで金属アルミニウムの付着特性及びRPF 燃

焼特性の検証の観点からコンバスタ運用条件を最適化 することを目的として,コンバスタ差圧,RPF中の 金属アルミニウム濃度を変化させて燃焼試験を実施し た.

2.2 試験装置及び燃料

試験装置の外観写真を図1に示す.コンバスタサイ ズは断面積0.4 m × 0.4 m,高さ21 mである.入熱 量は0.6 MWthである.供試燃料であるRPF はホッ パからスクリューフィーダで切り出され,重力落下で コンバスタ内に供給される.流動材として平均粒子径 190 µmのけい砂を使用した.

RPFの外観写真を図2に示す.形状は,直径8mm 程度,長さ10~15mm程度の円筒形である.RPF 燃料の分析結果を表1に示す.金属アルミニウム濃度 は,酸可溶性アルミニウム濃度と水溶性アルミニウム の差で表示している.

2.3 試験方法

試験条件を表2に示す.条件1では,ベース条件と してコンバスタ差圧14 kPa,コンバスタ温度850 を選定した.条件2ではRPF中金属アルミニウム濃 度変化試験を実施した.条件3では,条件2からコン バスタ差圧を7 kPaに低減した試験,条件4でコン バスタ差圧を低減したままでRPF中金属アルミニウ ム濃度を0.9%と低減した試験を実施した.

各条件ともに、炉内脱硫用の石灰石は無供給とした.

*4 長崎造船所火力プラント設計部陸用ボイラ設計課主席

^{*2} 原動機事業本部ボイラ技術部ボイラ技術二課長

^{*3} 原動機事業本部ボイラ技術部ボイラ技術二課

^{*5} 長崎造船所火力プラント設計部陸用ボイラ設計課

^{*&}lt;sup>6</sup> 技術本部長崎研究所火力プラント研究推進室

図1 試験装置 火炉サイズは断面積 0.4 m × 0.4 m , 高さ21 m , 入熱量は 0.6 MWthである.

図 2 RPF 外観(金属 AI:左 0.9 %,右 3.0 %) 直径 8 mm 程度, 長さ 10~15 mm 程度の円筒形である.

表 2 試験条件一覧

試験条件	条件 1	条件 2	条件 3	条件 4
変化条件	ベース条件	金属 AI 濃度	コンバスタ差圧	コンバスタ差圧, 金属 AI 濃度
火炉差圧 (kPa)	14.0	14.0	7.0	7.0
火炉温度()	850	850	850	850
RPF 中金属 AI(%)	1.9	3.0	3.0	0.9
試験時間 (h)	20	20	20	20

表1 RPF分析結果

			条件 1	条件 2	条件 3	条件 4	
т	水分	(%)	3.3	2.5	2.3	7.0	
業	灰分	(%)	10.4	9.7	7.2	7.1	
分析	揮発分	(%)	79.0	81.6	85.2	78.6	
171	固定炭素	(%)	7.3	6.3	5.2	7.3	
	С	(%)	51.4	56.6	64.3	57.9	
	н	(%)	7.3	7.9	9.2	8.0	
	0	(%)	30.2	25.2	18.4	25.7	
元	N	(%)	0.24	0.37	0.6	0.39	
素	T - S	(%)	0.02	0.05	0.0	0.07	
分析	V - S	(%)	< 0.01	< 0.01	< 0.01	0.03	
Â	T - CI	(mg/kg)	1 200	1 300	1 381	3 5 4 0	
無水	V - CI	(mg/kg)	1 1 0 0	1 200	1319	3410	
3	T - Ca	(%)	1.8	1.3	0.5	1.1	
	T - Na	(mg/kg)	390	322	232	470	
	Т-К	(mg/kg)	162	122	91	760	
	金属 AI	(%)	1.9	3.0	3.0	0.9	
高位	Z発熱量	(Kcal/kg)	5 5 2 0	6240	7 271	5620	
低位	2発熱量	(Kcal/kg)	4920	5710	6772	5180	
着火	く温度	()	232	228	232	235	

試験時間は各条件で20時間である.条件1と条件2 については,前半を条件1,後半を条件2とし,連続 して実施した.

各条件で燃焼試験中に排ガス濃度の計測を実施し, 試験終了後に炉内状況確認のため開放点検を行い灰付 着の状況を調査した.

2.4 試験結果及び実缶への適用

表3に各条件におけるサイクロン出口の排ガス性状 を示す 表4に各試験でのサイクロン点検結果を示す.

条件1並びに条件2では,コンバスタ差圧14 kPa, コンバスタ温度850 の運用条件でRPF中の金属ア ルミニウム濃度を1.9%及び3.0%として試験を実施 した.両条件でコンバスタ差圧分布並びにコンバスタ 温度分布は健全な状態であり,運転状態は安定してい

表3 サイクロン出口排ガス性状

				-		_
試験条件		条件 1	条件 2	条件 3	条件 4	
CO(12%O ₂ 換算値)	(ppm)	56	83	23	56	
NOx(6%O₂換算値)	(ppm)	67	75	82	77	
SOx(6%O₂換算値)	(ppm)	13	12	21	30	

表4 サイクロン内筒の状況

試験条件	条件1,2 (連続試験)	条件 3	条件 4
コンバスタ差圧	14 kPa	7 kPa	7 kPa
RPF 中の 金属 AI 濃度	1.9 %,3.0 %	3.0 %	0.9 %
状況写真 (内筒内面)	付着無し	 矢印部に 衝突付着 	付着無し

た.試験後の開放点検では,サイクロン内部,後部煙 道の水冷管に灰の付着はなく,炉底部においてもクリ ンカは見られなかった.

条件3においてはコンバスタ差圧の影響を把握する ために条件の14kPaから7kPaに低減させて運用し た.コンバスタ差圧が低い場合,コンバスタ底部で粒 子濃度が小さくなるために,コンバスタ底部の温度が 変動しやすい傾向が見られた.開放点検においては, 表4に示すとおりサイクロン内筒に灰が衝突付着して いた.一方,後部煙道の水冷管では灰の付着は見られ ず,ブローによる清掃で十分に除去可能であった.

条件3におけるサイクロン内筒付着灰の分析結果を 表5に示す.主成分として金属アルミニウムが39.4 % 含まれていることから,RPF中の金属アルミニウム

試驗条件 条件 3 サイクロン 火炉差圧 7 kPa 出口 火炉温度 850 燃料中金属 AI 濃度 3.0 % サイクロン SiO₂ (%) 9.7 入口 Fe₂O₂ (%) 13 T - AI (%) 64.9 組成 Ĥ 金属 AI 394 (%) T - Ca (%) 04 サイクロン内筒 T - Na (%) 0.04 T - K (%) 0.03 T - S (%) < 0.1 循環粒子 Ì. T - CI (mg/kg) 146

表5 サイクロン内筒付着灰の組成分析結果

がコンバスタ内で溶融してサイクロン内筒に衝突付着 したものと考えられる.本試験結果を条件1及び条件 2と比較すると,コンバスタ差圧が14 kPaの高め設 定の場合には,コンバスタ粒子濃度が高くなり,より 攪拌混合が進むため,コンバスタ内でRPF中金属ア ルミニウムの微粒化が進行し,サイクロン内筒への衝 突付着を回避する粒径まで微粒化するものと考えられ る.

条件4では、コンバスタ差圧を7kPaに低減した 状態でRPF中の金属アルミニウム濃度の影響を把握 するために、金属アルミニウム濃度を0.9%に低減し て試験を実施した.本試験では条件3と同様に、粒子 濃度が小さいためにコンバスタ底部の温度が変動する 傾向が見られた.試験後の開放点検では、サイクロン 内部、後部煙道の水冷管に灰の付着はなく、炉底部に おいてもクリンカは見られなかった.

循環粒子中の金属アルミニウムの形態を調査する目 的でEPMA分析(Electron Probe Micro Analysis) を実施した.表6に条件2と条件3におけるアルミ ニウム元素の分析結果を示す.矢印で示すアルミニウ ム同定箇所にはO元素は同定されなかったことから Al2O3等の酸化物ではなく,金属アルミニウムの単体 で存在していると考えられる.

コンバスタ差圧が7 kPaと低い場合には, RPF中 の金属アルミニウムと流動材との衝突, 微細化が不十 分な状態で循環粒子中の濃度が高いため, サイクロン

表6 循環粒子中AI元素の分布

同定元素	条件 2	条件3
アルミニウム元素 (白色部がアルミニウム) 元素の同定位置を示す	100 цт.	100 µm.

内で付着すると考えられる.したがって,実缶への適 用条件については,本試験で健全性が確認できたコン バスタ差圧を14kPaとして実缶を計画した.

3.王子板紙(株)向けボイラの概要

王子板紙(株)大分工場向け200t/hCFBボイラの概 要を以下に述べる.

本ボイラは重油焚き並びに石炭焚きボイラの代替と して新設された RPF・石炭焚き CFB ボイラで,発生 蒸気は新設抽気復水タービンを経て,既設抽気背圧 タービン及び製紙プラントに送気されており,すべて の工場負荷を本ボイラがまかなっている.

今回新設したプラントの全体鳥かん図を図3に示す.

3.1 ボイラ計画仕様

表7にボイラ主要仕様を示す.計画燃料は,RPF と石炭であり,各専焼及び混焼が可能である.表8及 び表9に計画燃料の性状を示す.

図4にボイラ計画図を示す.

ボイラは単胴放射型自然循環であり,風室・炉底・ 周壁及び天井はメンブレンウォールの水冷壁で構成 し,コンバスタ・対流伝熱部及びFBHE(流動床式 外部熱交換器)をコンパクトにまとめた一体構造と なっている.

コンバスタ底部及びFBHE底部には,空気ノズル が均等に多数配置されている.FBHE内には,層内 蒸発器及び三次過熱器が設置されている.一方,後部 煙道には,一次過熱器,四次過熱器,二次過熱器及び 節炭器が設置されている.

3.2 **蒸気・給水系統**

給水は,対流伝熱部である後部煙道内に設置された 節炭器で予熱され蒸気ドラムに入る.ボイラ水はコン バスタ周壁・FBHE内の蒸発器及びその周壁,後部 煙道部周壁で蒸発し,蒸気ドラムで水と蒸気に分離さ れる.

蒸気は,後部煙道内に設置された一次過熱器及び二次過熱器を通り,FBHE内に設置された三次過熱器で 経てさらに後部煙道内四次過熱器で規定の温度に昇 温され主蒸気管へ送られる.

二次過熱器と三次過熱器の間に,蒸気温度制御のた めに過熱低減器が設置されている.

3.3 循環粒子系統

粒子循環は二つの系統により構成されている.一つ は,コンバスタから飛び出した粒子がサイクロンで捕 集され,サイクロン下のシールポットを経てコンバス タへ戻される系統であり,もう一つは,シールポット 部側面にある灰取出調節弁の働きによってFBHEへ

図3 プラント全体鳥かん図 新設ボ イラ(中央),タービン及び冷却塔(右 側)等で構成される.

	ริ	長7	ボイラ主要仕様	
形蒸蒸蒸燃通燃		^発 圧温方方	式量力度式式料	三菱循環流動層ボイラ 200 t/h 11.9 MPag 541 循環流動層燃焼 平衡通風 RPF,石炭

発熱量((使用時高	高位)	(MJ/kg) 25.1
元素分析	Г	(無水基準	
炭	Ī	톬	(%)) 58.3
水		ξ.	(%)) 8.0
酸		ξ.	(%)) 27.2
窒		툸	(%)) 0.3
硫	ŧ	专	(%)) < 1.0
塩		툸	(%)) < 0.2
灰	5	ъ С	(%) 5.0
金属アノ	レミニウム	4	(%)) < 1.0
表 9	計画	燃 料	性状(石炭)
apt.	14/51	75		- u
722	不计	梩		白灰
 発熱量(<u>種</u> 2)(MJ/kg)	<u>白灰</u> 26.9
 発熱量(工業分析		 江)(基準)	MJ/kg)	白灰 26.9
<u>※</u> 発熱量(工業分析 固		<u>檉</u> 江)(基準) 分	MJ/kg)	白灰 26.9 7.9
 発熱量(工業分析 固 固		<u>檉</u> 江)(基準) 分 素	MJ/kg) (%) (%)	白灰 26.9 7.9 46.1
<u></u> 発熱量(工業分析 固 固 揮		<u>種</u> 注)(基準) 参素 分	MJ/kg) (%) (%) (%)	白灰 26.9 7.9 46.1 37.5
 発熱量(工業分析 固 超 揮 灰	<u>料</u> 〔恒湿高位 斤(恒湿碁 有 水 定 炭 発	<u>椎</u> 注)(基分素分分	MJ/kg) (%) (%) (%) (%)	白灰 26.9 7.9 46.1 37.5 8.5
 発熱量(工業分析 固 揮 灰 全	<u>科</u> [恒湿高位 所(恒湿 有 水 定 炭 発 硫	 社 社 社 学 大 家 分 黄	MJ/kg) (%) (%) (%) (%)	<u>白</u> 灰 26.9 7.9 46.1 37.5 8.5 0.53
<u>风</u> 発熱量(工業分析 固揮 友全 元素分析	科 1 1 1 <td> 建 1 2 1 準 分 素 分 黄 準) (」) (」) (」) (」) (」) (」) (」) ())))))) 単 分 素 分 分 黄 単) 二 二 の 分 一 進) 二 の 一 の 一 の し の 一 の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の の の の の し の の の し の し の の の の の の の の の の の の の</td> <td>MJ/kg) (%) (%) (%) (%)</td> <td>白灰 26.9 7.9 46.1 37.5 8.5 0.53</td>	 建 1 2 1 準 分 素 分 黄 準) (」) (」) (」) (」) (」) (」) (」) ())))))) 単 分 素 分 分 黄 単) 二 二 の 分 一 進) 二 の 一 の 一 の し の 一 の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の の の の の し の の の し の し の の の の の の の の の の の の の	MJ/kg) (%) (%) (%) (%)	白灰 26.9 7.9 46.1 37.5 8.5 0.53
<u> へ 発熱量(</u> 工業分析 固 揮 灰全 元素炭	科 「恒湿」 所(恒湿」 有 水 定 炭 発 硫 所(無水素)	 建 加 建 分 素 分 黄 二 美 二 一 二 一 二 一 二 一 二 一 二 一 二 一 二 一 二 一 二 一 二 一 二 二 二 二 二 二 二 二 二 二 二 二 二	MJ/kg) (%) (%) (%) (%) (%)	白灰 26.9 7.9 46.1 37.5 8.5 0.53 69.6
	科 「恒湿」 所(恒湿,水 方 定炭 発 所(無水素)	 _	MJ/kg) (%) (%) (%) (%) (%)	白灰 26.9 7.9 46.1 37.5 8.5 0.53 69.6 4.8
	<u>科</u> 恒湿恒湿 有 水 定 炭 硫 所(無水	 _	MJ/kg) (%) (%) (%) (%) (%) (%)	白灰 26.9 7.9 46.1 37.5 8.5 0.53 69.6 4.8 14.7
<u> </u>	<u>料</u> 恒恒な 行(恒湿水炭 発 硫 斤(無水基		MJ/kg) (%) (%) (%) (%) (%) (%) (%)	日來 26.9 7.9 46.1 37.5 8.5 0.53 69.6 4.8 14.7 1.35

表8 計画燃料性状(RPF)

RPF

種

燃

料

図4 ボイラ計画図 ボイラ上部に排気 塔,右側にAH,ファン及びバグフィ ルタが配置される.

図5 ボイラプラント系統図 7

ボイラ構成機器,空気・排ガス系統が示される.

流れる粒子量を調節し, FBHE で粒子が冷却されてコンバスタへ戻り再循環する系統である.

3.4 空気・排ガス系統

図 5 にボイラプラントの系統図を示す.通風方式は 平行通風方式である. 一次空気は,押込通風機,一次空気通風機によって 昇圧され空気予熱器で予熱された後,コンバスタ底部 の風箱へ送られる.一方,二次空気は,空気予熱器で 予熱された後,コンバスタ下部に設置された二次空気 ノズルからコンバスタ内へ投入される. コンバスタを出た燃焼ガスは,サイクロンで流動材 が分離され,後部煙道に入り過熱器及び節炭器で熱交 換をし,さらに空気予熱器で熱交換をした後にボイラ を出る.ボイラを出た燃焼ガスはバグフィルタにより 除じんされ,誘引通風機にてボイラ上部に設置された 排気筒へ導かれる.

3.5 燃料供給系統

図6に燃料供給系統図を示す.RPF及び石炭の各 燃料での専焼が可能な燃料供給系統となっている. RPFは既設貯蔵タンクからコンベアでRPFバンカ へ送られる.RPFバンカ以降の系統は2系統同じ機 器が設置されている.RPFバンカからは計量機を経 て石炭と同様にRPF専用シュートにて重力落下で投 入されるが,シール性を確保するためにロータリーフ ィーダは2台直列に設置されている.

石炭は受入ホッパからコンベアにより石炭貯蔵タン クへ貯えられ,クラッシャを経て適当な粒径に調整さ れた後,石炭バンカへ送られる.石炭バンカからは計 量給炭機,分配機を経て2本の石炭専用シュートに分 配される.以後,ロータリーフィーダを経て重力落下 で火炉へ投入される.

3.6 石灰石·灰処理系統

所定の粒径の石灰石はジェットパック車で搬入され,石灰石タンクに貯えられる.石灰石はコンバスタ 内での脱硫のために連続的にコンバスタへ供給される.

コンバスタ底部にはベッドアッシュ排出設備が設け られている.ベッドアッシュは,ベッドアッシュクー ラで冷却された後,分級器にて不燃物を取り除かれ, ベッドアッシュタンクに貯蔵される.このベッドアッ シュは流動材不足時に圧送によりコンバスタへ投入さ

図6 燃料供給系統図 供給系統はRPF,石炭ともに, 各2系統あり,各燃料で専焼可能である. れ再使用される.取り除かれた不燃物は不燃物タンク に貯えられ,トラックにより搬出される.

バグフィルタによって捕集されたフライアッシュ や,節炭器下ホッパあるいは空気予熱器下ホッパに落 下したフライアッシュは圧送によりフライアッシュタ ンクに搬送され,一部はコンバスタに再循環される. 貯えられたフライアッシュは加湿器を経て加湿された 状態でトラックにより搬出される.

4.王子板紙(株)向けボイラの運転結果

4.1 性能確認試験結果

表10にボイラの計画値を示す.図7に性能確認試 験時の時間トレンドを示す.

表10 王子板紙(株)向けボイラの計画値

		計画値
蒸発量	(t/h)	200
蒸気温度	()	541
ボイラ効率	(%)	91.4/92.3
NOx 濃度(O ₂ 6%)	(ppm)	150
SOx 濃度(O26 %)	(ppm)	50
ばいじん濃度(O26%)	(mg/m ³ _N)	30
HCI濃度(O ₂ 12%)	(mg/m ³ _N)	250
CO濃度(O ₂ 12%)	(ppm)	100
ダイオキシン類		
排ガス中濃度(O ₂ 12%)	(ngTEQ/m ³ _N)	0.1
フライアッシュ中濃度	(ngTEQ/g)	3.0

17 性能確認試験時の時間トレンド 主蒸気流量及び 圧力,環境値ともに十分に安定している.

ボイラ性能は, RPF専焼とRPF・石炭の各50%混焼の二種類の確認試験を実施した.

試験結果はすべて計画値を満足し 特に環境特性は, NOx排出濃度,SOx排出濃度,CO排出濃度及びHCI 排出濃度ともに計画値を十分に達成する値を安定して 示した.

ボイラマスターは, RPF専焼時はRPFで, RPF・ 石炭混焼時は石炭でそれぞれ行った.いずれの場合に も,主蒸気圧力,主蒸気温度及び主蒸気流量ともに安 定した運転が確認され, RPFを主燃料とした運用も 十分可能であることが実証された.

コンバスタ温度は,FBHEへの循環粒子の流量を 灰取出調整弁によって調整することで制御されるが, RPF専焼及びRPF・石炭混焼ともに,負荷変化を考 慮して設定したコンバスタ温度,約820 前後に安定 して制御されており,灰取出弁によるコンバスタ温度 制御が効果的であることを示している.

また,ダイオキシン類については,800 以上の安定したコンバスタ温度と十分な滞留時間により,排ガス中濃度及びフライアッシュ中濃度ともに計画値を十分に達成する結果となった.

4.2 開放点検結果

運開後から3ヶ月後と6ヶ月後に,サイクロン及び 後部煙道伝熱管の健全性確認のために,開放点検を実施した.

点検の結果,サイクロン内,後部煙道伝熱管のいず れにも金属アルミニウムの付着は認められず,健全で あることが確認された.なお,RPF中の金属アルミ ニウムは,0.3~1.3%程度と幅があった. 5.ま と め

廃紙と廃プラの固形化燃料であるRPF(Refuse Paper and Plastics Fuel)を循環流動層(CFB)ボ イラに適用し,ボイラ運用の健全性,排ガス(CO, NOX,SOX,ダイオキシン類)及び灰中ダイオキシ ン類の排出規制に対して適応可能であることを検証し た.

今後もボイラ燃料として RPF のニーズは高まる傾向であり,当社の流動層技術を最大限に活用してユー ザに御満足いただける設備を提供していきたい.

参考文献

- (1)長谷川考司ほか,三菱-ルルギ循環流動層ボイラの計画と運転実績,三菱重工技報 Vol.27 No.4
 (1990)
- (2)石原崇夫ほか,150t/h循環流動層ボイラの計画と 運転実績,三菱重工技報 Vol.25 No.3 (1991)

坂井俊之

-

國領繁光

鳥居功