特 集 論 文

航空機構造健全性モニタリング技術 の開発

Development of Health Monitoring System for Aircraft Structures

藤	原		力*1	伊原	木幹	成* ²
長	井	謙	宏*3	鎗	孝	志*4

1.はじめに

航空機の構造は,綿密な解析と数多くの実証試験に裏付け された設計と,徹底した品質管理の下での製造により,高度 な信頼性が確保されている.しかしながら,その高機能性ゆ えに民間機でも適用比率が急速に拡大している複合材構造に おいては,材料のばらつきが大きいとともに製造過程が複雑 なことや非破壊検査が容易でないことから,いかにして構造 の信頼性を確保するかが課題となっている.そこで近年注目 を集めているのが各種センサを用いて構造の状態を診断す る,構造健全性モニタリング技術の開発である.構造健全性 モニタリング技術を航空機構造に適用することにより,構造 が内包する欠陥を事前に把握したり,運用中に生じた微細な 損傷を検知することで破壊を未然に防ぐことが可能となり、 機体の安全性を向上させることができる.本報では,複合材 航空機構造への適用を目的とした、分布型光ファイバセンサ による構造健全性モニタリング技術について紹介する.

2.構造健全性モニタリング技術

2.1 計測手法

複合材構造の健全性をモニタするセンサとしては,軽量, 高強度,耐久性,無誘導性,材料への埋込みが可能等の特長 から,光ファイバが最適と考えられる.中でも光ファイバ長 手方向に沿って連続したひずみ分布の計測が可能となるブリ ルアン後方散乱光を用いた光学時間領域反射測定法

(Brillouin Optical Time Domain Reflectometor,以下BOTDR と略)は,光ファイバ全長がセンサとして働くことや,特別 なセンシング部を必要とせず市販の光ファイバが利用できる 点で優れている、ひずみ分布の変化から構造全体の健全性が 推定できる技術として実用化が期待されている.

BOTDRの計測原理を図1に示す.光ファイバの片端から 入射したレーザパルスは,光ファイバ内を伝ばしながらブリ ルアン散乱による戻り光を発生するが,この戻り光の周波数 変化と戻るまでの時間差から,ファイバ内での位置(入射端 からの距離)とその位置におけるひずみや温度といった物理 量変化を計測することができる.

しかしながら,航空機構造への適用を考えた場合,現状の 技術においては,空間分解能(ひずみが計測できる最小の単 位長さ)の向上と計測装置の小型軽量化との両立が最も大き な課題となる.そこで当社は,市販の光ファイバひずみアナ ライザの計測スペクトルを逆解析することで空間分解能を向 上させる手法を開発した(1).

2.2 実証試験

開発技術の実証は,航空機胴体を模擬した(図2),直径 1.5 m, 全長 3 mの CFRP (炭素繊維強化複合材料)の供試 体を製作し,荷重試験を実施することで行った.図3に荷重 試験のために供試体をセットした状態を示す.荷重試験では, 供試体の片端を試験架構に取り付け,他端に約20トンのせ ん断荷重を鉛直方向に与えた(2).

光ファイバセンサは,供試体のストリンガ及び外板の長手

*2名古屋航空宇宙システム製作所研究部主席

**名古屋航空宇宙システム製作所研究部機体機器研究課

図 3 健全性モニタリング技術実証試験(航空機 胴体構造荷重試験)

方向に計15本取り付け(埋め込み及び貼付),最終的にはそ れらを結合し1本の光ファイバとして計測を行った.同時に 適切な個所にひずみゲージを貼付し,比較のためにひずみ計 測を実施した.荷重試験における計測結果を,図4に示す. 結果を見ると,上面パネル及び側面パネルはひずみの変化の 割合が小さかったこともあり,実線で示した市販装置による 計測値はひずみゲージ値と比較しておおむね良く一致してい る.しかしながら,下面パネルに対しては,特に試験架構へ の支持部近傍においてひずみの変化率が大きく,装置そのも のの計測値では空間分解能の問題から精度が出ないことが明 らかとなった.これに対し,破線で示した結果は,計測スペ クトルの逆解析により空間分解能を市販装置の2倍に向上さ せたものである,また図5は,図4における下面パネルの比 較の一部を拡大したものである,ひずみゲージによる計測値 との差異は,市販装置では平均16%であったのに対し逆解 析手法では平均7%と,分布ひずみの計測精度が改善されて いることが分かる.これにより,開発手法を適用すれば,航 空機のような大型構造の健全性を評価することが可能なひず み計測精度を達成できることが確認された.

また,本供試体複合材パネル(外板及びストリンガの一体 成形部)のオートクレーブ成形時においても,埋め込み光フ ァイバによるBOTDR計測を実施した.その結果,構造強度 へ影響を及ぼす成形時の残留ひずみの導出に成功するととも に,製造欠陥を防止するための最適な成形条件設定に関する 情報を取得することができた.

3.**ま** と め

航空機構造の健全性モニタリング技術を実用化するために は、本報で紹介した空間分解能の向上技術の開発以外にも、 計測精度の向上,温度補正技術の開発,搭載機器の制約(寸 法,重量,環境温度及び振動等),機器の信頼性向上,計測 データの処理手法及び評価法の確立、センシング部材の選定

0 - 1000 33 35 37 39 41 43 45 計測器からの距離(m) 航空機胴体構造分布ひずみ計測結果(下面パ 図 5 ネルー部拡大)

等々,克服すべき課題は多い.しかしながら,海外の航空機 メーカ等では民間機の複合材構造に健全性モニタリングを適 用する動きもあり(3),今後ますます実用化が加速化されるも のと考えられる.当社でも本研究成果をもとに,航空機の安 全性向上を目指した構造健全性モニタリングシステムの開発 を進めてゆきたい.

最後に,本内容は,平成10年度から14年度まで新エネル ギー・産業技術総合開発機構(NEDO)より(財)次世代金 属・複合材料研究開発協会(RIMCOF)が受託した"知的材 料・構造システムの研究開発"において、当社が実施した研 究の一部について記載したものである.

参考文献

- (1) Yari, T. et. Al., Strain Distribution Measurement using Distributed BOTDR Sensors, SPIE Vol.5054 (2003) p.175
- (2)長井謙宏ほか,損傷探知・損傷抑制デモンストレータ 試験総括,第4回"知的材料・構造システム"シンポジ ウム講演集(2003) p.21
- (3) Jenks M.D. et. Al., Materials Technology for the BOEING 7E7, Proceedings of SAMPE 2003 (2003) p.1821

藤原力 伊原木幹成

