MOVE THE WORLD FORW>RD MITSUBISHI HEAVY INDUSTRIES GROUP

MHI-MME WHRS - STG

Environment friendly and economical solution

Contents

MITSUBISHI HEAVY INDUSTRIES MARINE MACHINERY & ENGINE CO., LTD.

Overview

- 1. Outline, WHRS-STG system
- 2. Feature, WHRS-STG system
- 3. Example of benefits
- 4. Small STG for 250K Bulk Carrier
- 5. Solution for slow steaming operation

Overview

MHI-MME's WHRS-STG offers solutions of ;

Environment Friendly

- Reduction of emission gas
- Saving fuel consumption

Efficient

- Reduction of power or stop of D/G
- Optimized thermal efficiency of total plant incl. M/E, D/G and A/B.
- ... by Efficient waste heat recovery, Large output, Optimum load sharing control

Economical

- Saving total fuel consumption
- Lower maintenance & running cost

Easy

- Easy maintenance, basically maintenance free, no continuous worn part, consumable parts, oil consumption.
- Easy operation, full automatic remote control / monitoring
- Easy installation, supplied as a complete package
- High reliability and safety by proven design, technology, and rich experience
- Effective solution for environment and economical
- Effective feedback for higher reliability and easier operation
- Regulations for emission
- Oil price
 - * WHRS : Waste Heat Recovery System

Production record (WHRS-STG)

As of Dec.28, 2016

Kind of Ship	Capacity	Main Engine Type	Contract	Delivered	Gen. Output
Container	8,500 TEU	Wartsila 12RT-flex96C	12	12	6,000 kW
Container	4,500 TEU	MAN B&W 6S80ME-C9	22	22	3,100 kW
Container	7,450 TEU	MAN B&W 9S90ME-C Mk8	16	16	3,700 kW
Container	13,000TEU	MAN B&W 12K98ME-7	9	9	7,000 kW
Container	18,000 TEU	MAN B&W 8S80ME-C9.2(x 2skegs)	20	20	6,000 kW
Ore Carrier	250,000 DWT	MAN B&W 7S80MC-C Mk7	1	1	1,700 kW
Container	15,000 TEU	MAN B&W 9S90ME-C10.2	11	11	2,700 kW
Container	18,800 TEU	MAN B&W 10S90ME-C10.2	6	6	3,000 kW
Container	19,630 TEU	MAN B&W 7G80ME-C9.5(x 2skegs)	11	0	4,600 kW
Total			108	97	

1. Outline, WHRS-STG system

MHI-MME / WHRS

Eco - TG System (Without gas bypass)

This is a conventional system which all exhaust gas after TC is led to the Economizer. The steam turbine power is not so great amount.

Eco - TG System (With gas bypass)

With extracting an exhaust gas partially from main engine to economizer, this system realized more amount of power generation by increasing economizer steam amount and temperature. The power generation amount is **1.5 to 1.8 times** more than above system.

STG System (Super Turbo Generating)

The exhaust gas partially extracts from main engine exhaust gas manifold then it drives an Exhaust Gas Power Turbine, which is connected to steam turbine with SSS Clutch. **2.4 to 2.8 times** more power generation than conventional one.

1. Outline, WHRS-STG system

1. Outline, WHRS-STG system

Single Responsibility for whole system

- Coordination of whole system by MHI
- ☑ Competitive performance
- ☑ One window & support to ship owner after delivery

Configuration of STG unit

WHRS can be installed all kind of ships

Onboard installation

Full package & Easy installation
 High thermal efficiency
 High reliability

STG52/42 overview (Onboard installation)

Exhaust gas valve arrangement

Exhaust gas extraction

2457 .

Turbine control panel

Full automatic
 Plant monitoring system
 Performance diagnosis

Monitoring screen of Whole plant

power turbine

Simulation technology – Crew Training Simulator

- Plant simulation technology is applied
 - Model of system of related equipment & panels
 - Dynamic system behavior
- To be familiar with WHRS/TCP concept and to learn operation of WHRS/TCP in office with easy handling
- Condition setting to start can be selected in Operating time chart
- Monitor dynamic plant reaction (Trend monitor)

3. Example of benefits

EEDI / IMO (MEPC) regulation EEDI : Energy Efficiency Design Index $EEDI = \frac{CO_2 \text{ emission}[g/h]}{Capacity[ton] \times Speed[mile/h]}$ I [ton] 1 [mile/h]

Regulation

How does the EEDI reduce?

- > Slow steaming operation
- > Improvement of ship shape and propeller
- > Air lubrication system
- > Derating engine
- > WHRS
- > Gas fuel engine
- Renewable energy

3. Example of benefits

18,000TEU class C/V EEDI estimation

STG output

Main engine : 10G95ME-C9.5 (SMCR : 59,000 kW x 78.4 r/min), Tier2

Ambient Condition		ISO									
M/E Load (%)		100	90	75	60	50	45	40	35	30	25
Output from P/T	(kW)	1,472	1,469	1,179	798	552	136	0	0	0	0
Output from S/T	(kW)	2,021	1,827	1,592	1,255	1,114	757	463	380	317	0
Gen. Output	(kW)	3,492	3,297	2,771	2,054	1,667	893	463	380	317	0

Saving fuel cost

Summary:

- HFO price : 400 US\$
- Annual Operation Time: 7,000hrs (21 knots(75%load))

M/E type [SMCR x rev.]	10G95ME-C9.5 [59,000 kW x 78.4 r/min]
SMCR (100 % M/E load) speed	23 knots
Fuel consumption without WHRS	62,096 tons
Fuel consumption with WHRS	58,654 tons
Saving fuel consumption	3,442 tons
Saving fuel cost	1,475,137 US\$

Reducing emission gas

Main engine : 10G95ME-C9.5 (SMCR : 59,000 kW x 78.4 r/min), Tier2

Vessel speed : 21kt (abt. 75% SMCR)
 Annual operating time : 7,000 Hr

4. Small STG for 250K Bulk Carrier

STG arrangement & Shaft Motor in Engine Room

250K Bulk Carrier

STG (AT42C + MPT33A)

All auxiliary engine can stop when over than ME 55% load, the demand can be supplied by WHR power, and surplus power can be utilized to SGM(Power Take In) to save ME FOC

Shaft motor

Test result

- M/E Output: 17,850kw@85%MCR (7S80MC-C:21,000kw@100%MCR)
- Ship demand: 595kw

- WHRS(STG) installed Generated: 1,392 kw at 85%
- SM(Shaft Motor) installed
- All DG stop
- SM(Shaft Motor): 796kw to assist Main Engine

<u>Total save fuel about "8%"</u> (481,000 US\$/year (400 US\$/ton))

Estimated STG power (ISO)

■ (1) Part load optimization design concept

✓ Part load optimization design concept

	(a) Conventional des.	(b) Part load optimum des.
EGE Exh.Gas line configuration * EGE : Exh.Gas Economizer	EGE from M/E	Bypass at higher than 75% load (Very similar steam generation at 75% and lower load) EGE from M/E
EGE design point	ISO 90%	ISO 75%
Heat transfer area	100%	79%
Installation space	100%	80%
Weight	100%	85%
Exh.gas velocity (at same M/E load)	100%	133% ✓ Soot blowing at lower M/E load
EGE start point	M/E load 30%	M/E load 22%

5. Solution for slow steaming operation

(1) Part load optimization design concept

- (a) EGE design point ISO 100% (Conventional design)
- (b) EGE design point ISO 75% (Exh.Gas bypass at higher load than 75% to maintain M/E back press.)
- Benefit by concept (b)
 - Smaller EGE (installation space and weight)
 - Soot blowing at lower load due to higher velocity of Exh.Gas
 - Very similar WHRS output at 75% and lower load expected as major loads in actual sailing
 - Lower investment by practical Generator rated power and selection of ST frame

■ (1) Part load optimization design concept

HFO price (IFO380)	: 400 US\$/ton
Total operating days	: 250 days (75% load : 50%, 55% load : 50%)

M/E type [SMCR x rev.]	10G95ME-C9.5 [59,000 kW x 78.4 r/min]			
EGE Design	(a) Conventional design	(b) Part load optim. des.		
Fuel consumption without WHRS	48,350 ton	48,350 ton		
Fuel consumption with WHRS	45,850 ton	45,900 ton		
Saving fuel consumption	2,500 ton	2,450 ton		
Saving operating cost	1,074,960 US\$	1,053,730 US\$		

■ (2) Waste heat recovery of Aux. Engine

☑ Utilized Aux. Engine Exh. gas Energy for large container ship

MITSUBISHI HEAVY INDUSTRIES MARINE MACHINERY & ENGINE CO., LTD.

■ (3) Increase of steam generation

☑ Increase of steam generation in low load operation

MITSUBISHI HEAVY INDUSTRIES GROUP