# Mitsubishi User's Seminar in Athens CONFIDEN

# Technologies Update for IMO NOx Tier III Regulations

#### 16th June 2016

#### Naohiro Hiraoka

📩 MITSUBISHI HEAVY INDUSTRIES MARINE MACHINERY & ENGINE CO., LTD.



#### Contents





- 1. Regulation trend
- 2. Compliance plan
- 3. Low Pressure EGR
- 4. Low Pressure SCR
- 5. Comparison among Tier III technologies

#### Contents





- 1. Regulation trend
- 2. Compliance plan
- 3. Low Pressure EGR
- 4. Low Pressure SCR
- 5. Comparison among Tier III technologies

# 1. Emission Regulation of IMO & CARB



WFS-1015 🛛 👗 MITSUBISHI HEAVY INDUSTRIES MARINE MACHINERY & ENGINE CO., LTD.

65°0'0'W

60°0'0"W

60°0'0"W



#### Contents





- 1. Regulation trend
- 2. Compliance plan
- 3. Low Pressure EGR
- 4. Low Pressure SCR
- 5. Comparison among Tier III technologies

#### How to operate the ENGINE

Outside of ECA => Basically same as Tier II specification. Inside of ECA => NOx reduction technology (76% less than Tier II)

### **(1) METHODS IN-ENGINE**

- EGR (Exhaust Gas Recirculation) with low press. loop

#### **② AFTER TREATMENT**

- SCR (Selective Catalytic Reduction) after Turbocharger\*\_

# For both measures, operation change between Tier II and Tier III mode is switching off/on. (Then, exhaust gas valve will be switched off/on.)

\* The national project called "Super Clean Marine Diesel" was carried out by the Japan Ship Machinery & Equipment Association (JSMEA) financially supported by the Nippon Foundation, led by the Ministry of Land, Infrastructure, Transportation and Tourism (MLIT).

The research and development contract for the large slow speed diesel engines' application was carried out by JSMEA, Akasaka Diesels Limited, Oshima Shipbuilding Co., Ltd., Sakai Chemical Industry Co., Ltd. and Mitsubishi Heavy Industries, Ltd.







Regarding to middle and large size LSE-Eco/LSH-Eco type engine which bore diameter is larger than 45cm, we apply Low Pressure EGR basically.

Regarding to small size engine, we recommend Low Pressure SCR.

Regarding to LSE mechanical engine and LSII type engine, we apply Low Pressure SCR.

(Note) This compliance policy might be changed without advanced announcement.

# 2. Tier III Compliance Policy



| Engine Type  |            | Applied Tier III Technology |                 |            |
|--------------|------------|-----------------------------|-----------------|------------|
|              |            | EGR                         | SCR             |            |
| UEC80LSE-Eco |            | 0                           | -               |            |
| UEC60LSE-Eco |            | 0                           | -               | -          |
| UEC50LSH-Ec  | 0          | 0                           | -               | -          |
|              | Eco        | 0                           | -               |            |
| UEC30L3E     | Mechanical | -                           | O <sup>%1</sup> | -          |
|              | Eco        | 0                           | Alternative     |            |
| UEC43L3E     | Mechanical | -                           | 0               | -          |
|              | Eco        | Alternative                 | 0               |            |
| UEC35LSE     | Mechanical | -                           | 0               |            |
|              | Eco        | Alternative                 | 0               |            |
| UEC33L3E     | Mechanical | -                           | 0               |            |
| UEC43LSII    |            | -                           | 0               |            |
| UEC37LSII    |            | -                           | 0               |            |
|              | Eco        | -                           | 0               | O:Equipped |
| UECSSLOII    | Mechanical | -                           | 0               | Ж1∶On requ |

(Note) This compliance policy might be changed without advanced announcement.

#### Contents





- 1. Regulation trend
- 2. Compliance plan
- 3. Low Pressure EGR
   LP-EGR system
   Onboard durability confirmation
- 4. Low Pressure SCR
- 5. Comparison among Tier III technologies

# 2. EGR technology

 EGR (Exhaust Gas Recirculation) is the in-engine NOx reduction technology by slow speed combustion in combustion chamber.



#### <Non-EGR operation (Global Area)>

- Non-EGR operation is same as traditional engine (Tier II).
- Scavenging media is air. (O2 concentration≒21%)
- Because of efficient combustion, NOx emission is large.

#### <EGR operation (in ECA)>

- EGR valve is opened, then a part of exhaust gas will be recirculated.
- Scavenging media is mixture of air and recirculated exhaust gas. (O2 concentration≒16~18%)
- Slow-speed combustion leads less thermal-NOx production.

# 2. EGR scrubber development

EGR scrubber has developed from land-base type (1<sup>st</sup> generation) into small-sized 2<sup>nd</sup> generation type.



Overview of EGR system in 4UE-X3 (1<sup>st</sup> generation)



**On-engine EGR system (2<sup>nd</sup> generation)** 

⇒ Developed downsizing and optimization

WFS-1015 A MITSUBISHI HEAVY INDUSTRIES MARINE MACHINERY & ENGINE CO., LTD.

### 2. Water Treatment System





# SIMPLE SYSTEM

LP-EGR has

"Smaller numbers of equipment and pipes".

# SIMPLE OPERATION

LP-EGR controls "Smaller numbers of equipment".

- SMALL CAPEX and OPEX
  - **LP-EGR** leads

"Lower material cost and electric power".

LP-EGR can make

"Additional boiling unnecessary".

# ⇒ LP-EGR system has great advantages

# 2. Comparison between LP and HP EGR System







# [Target]

- Designing on-engine LP-EGR system, the world's first "Compliance with IMO NOx TierIII regulation by LP-EGR". Further, the world's first installing LP-EGR system onboard and executing sea trial.
- Regarding the Water Treatment System(WTS), by combination of two centrifuges, after optimization of water treatment performance and entire EGR system, comply with waste water regulation the EGCS guideline in EGR operation using HFO.
- Confirmation of long-term durability.
  - > Performances using HFO, LSMDO and MGO
  - > Durability of Demister, T/C compressor wheel and WTS
  - > Load following capability in voyage and robustness of control system
  - ⇒Final verification of total system onboard and feedback to EGR system specification optimized.

### 3. LP-EGR (reference engine and vessel)





| Engine type                        | 6UEC45LSE-Eco-B2-EGR    |  |  |  |
|------------------------------------|-------------------------|--|--|--|
| Bore x Stroke                      | 450 mm x 1930 mm        |  |  |  |
| Fuel injection/<br>Exh valve drive | Electrically controlled |  |  |  |
| Vessel type                        | Bulk Carrier            |  |  |  |
| Vessel size                        | 34,000 DWT              |  |  |  |
| Schedule                           |                         |  |  |  |
| Shop test                          | April 2015 [done]       |  |  |  |
| Sea trial                          | August 2015 [done]      |  |  |  |
| Vessel delivery                    | August 2015 [done]      |  |  |  |
|                                    |                         |  |  |  |

#### **EGR Scrubber**

#### **Demister**

Pipe (EGR blower to Turbocharger)

# 3. Shop Test with LP-EGR system(Overview)



#### 6UEC45LSE-Eco-B2-EGR



WFS-1015

# **3. Summary of Shop Test Results**

#### **Reliability of EGR system**

Confirm good load response/performance with EGR system.

e.g. EGR mode on/off, load response,

110% load operation, emergency stop etc.

#### NOx emission performance

- Carried out NOx test attended by ClassNK.
- NOx E3 mode: 3.2g/kWh  $\Rightarrow$  Comply with NOx Tier III regulation (3.4g/kWh).

#### **Engine performance**

Confirm keeping SFOC penalty and exhaust gas temperature and so on within planned value.





Tier III

Test results of 45LSE





# 3. Overview of system installation into the vessel











WFS-1015

MITSUBISHI HEAVY INDUSTRIES MARINE MACHINERY & ENGINE CO., LTD. © 2016 MITSUBISHI HEAVY INDUSTRIES MARINE MACHINERY & ENGINE CO., LTD. All Rights Reserved.



# Reliability of EGR system

 Confirmed good load response/performance with EGR system the same as shop test.

e.g. EGR mode on/off, load response, emergency stop and so on.

Whole system operation including Water Treatment System.

# Performances of NOx emission and Engine

- Confirmed good performances of NOx and SFOC the same as shop test.
- Obtained performance data in operation with both MDO and HFO.

# Water Treatment System

- Confirmed waste water quality in operation.
- Confirmed proper system of waste water monitoring and control.





Shop test results of 45LSE



#### ⇒Confirmed the same performance comparing with past test results regarding DeNOx performance and SFOC penalty.

# 3. Sea Trial Result(SFOC penalty at NR)



⇒Confirm SFOC penalty of the sea trial almost same as the shop test results at NR in condition with using HFO.

CONFIDENTIAL 21

# 3. Sea Trial Result(Water Treatment System)



Confirm below items regarding with waste water.

- ETM, OMM, Record Book
  - $\rightarrow$ Manuals necessary to be onboard. Reviewed by ClassNK.
- Test Procedure, Test Report
  - →Confirmed at mooring operation and sea trial. Reviewed and witnessed by ClassNK.
  - ⇒Confirmed the system complied with IMO's 2009 Guidelines for EGCS.
    Permitted regarding overboard waste water by the Panamanian Flag.



Waste water sampling

| PANAMA MARITIME AUTHORITY<br>Technical Office - Segumar Tokyo<br>Na 86 Kwa Bidg Rm 805 412-24, Nishi-Azabu,<br>Minato-ku, Tokyo, Japan (16-603)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Approval documents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tel: (81) 3-1499-366<br>F-mail: <u>perumar/Baumacomul-tolyno.com</u><br>TO: NIFPON KAIJI KYOKAI (NEK)<br>DATE: AUGUST 17, 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SUBJ: DECEMBENT DIRENT UNATE UP MIRCHANT MARINE, SECUMAR-TOKIO SUBJ: MV: DREAM ISLAND IMO: 9748253 CALL SIGN: 38WU7 DISCHARCE OF WASHWATER ROM UNILAUST GAS RECIRCULATION (EGR) SYSTEM AUTHORIZATION OF REF: 50.0000 CONSTRATION HAS BEEN INFORMED BY MANAGEBOUNDER AND CONTRIBUTED INFORMATION MARGETHAT SIZE CT VESSEL INSTALL ON BOARD A EMILAIST GAS EGROLIATION HAS BEEN INFORMED BY MANAGEBOUNDER AND CONTRIBUTED BY CONSTRATION HAS BEEN INFORMED BY MANAGEBOUNDER AND CONTRIBUTED BY CONSTRATION HAS BEEN INFORMED BY MANAGEBOUNDER AND CONTRIBUTED BY CONSTRATION HAS BEEN INFORMED BY MANAGEBOUNDER AND CONTRIBUTED BY CONSTRATION HAS BEEN INFORMED BY MANAGEBOUNDER AND CONTRIBUTED BY CONSTRATION HAS BEEN INFORMATER REQUIREMENTS OF BECICULITION MERCI (1459), 2009 GUIDELINES FOR ENALUST GAS CLAIMING SYSTEMES BY CONSTANTS MONTORING, THAT 38 BECH VASI'N ATTE WEAPY. THROUGH CONSTANTS MONTORING, THAT 38 SECHARCING WATER COMPLY WITH THE REQUIREMENT OF RESOLUTION MERCI-14(99). ALL THE WATER AFTER MONTORING WHICH NOT COMPLY WITH RESOLUTION MERCI-154(99) WILL RETAIN ON BOARD AND DISCHARGE TO RESECTION FACILITY AT PORT. PLEASE FROCEED ACCORDINCLY AND MOTIPY ALL CONCERNED PARTIES. BIST EEGARDS.   CONSTANTS MONTORING THAT INFORMATION FOR WHICH NOT COMPLY WITH RESOLUTION MERCI-154(99) WILL RETAIN ON BOARD AND DISCHARGE TO RESECTION FACILITY AT PORT. PLEASE FROCEED ACCORDINCLY AND MOTIPY ALL CONCERNED PARTIES. BIST EEGARDS.  CONSTANTIONE AUTHORITY | <image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header> |

# 3. Overhaul Inspection Result after Sea Trial



#### Good condition ! $\Rightarrow$





Turbocharger Compressor wheel



EGR Blower wheel

- Confirmed a little amount deposit of sodium sulfate and soot.
  - $\Rightarrow$  Continue to follow condition in long-term durability test.

WFS-1015 A MITSUBISHI HEAVY INDUSTRIES MARINE MACHINERY & ENGINE CO., LTD.



Updated status is below.

# EGR operation hour : approx. 400h (approx. 12% of TRH) HFO operation : approx. 200h LSFO operation : approx. 200h

Achievement : optimizing some parameters about WTS

### Experience : some minor troubles

- Change piping material of O2 sensor
- Leakage from shaft sealing of aux. blower
- Bugs of control panels



#### Parts for major concern are in good condition.

 $\Rightarrow$ Under investigation.



## [Piston ring]



#### [Turbocharger compressor wheel]



# 3. Evaluation in future

Evaluation items are as below.

Term of durability test: 2015.8 ~ 2017.1(plan)

| Test item                                                            | Purpose                                                                                                                                                                              | Action                                                                           |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Performance Test                                                     | <ul> <li>Confirm performance variation between EGR<br/>mode ON and OFF in normal operation.</li> <li>Confirm performance variation across the<br/>times in EGR operation.</li> </ul> | Acquisition of performance data<br>and log data<br>Measuring exhaust gas         |
| Load Following Test<br>in harbor                                     | <ul> <li>Confirm load following capability of M/E and<br/>EGR system in harbor.</li> </ul>                                                                                           | (Log data in EGR control panel)<br>(Measuring exhaust gas)                       |
| Load Following Test<br>at rough sea                                  | <ul> <li>Confirm load following capability of M/E and<br/>EGR system in EGR operation at rough sea.</li> <li>Confirm level settings of various tanks.</li> </ul>                     | (Log data in EGR control panel)<br>(Measuring exhaust gas)<br>(Inspection check) |
| Periodical Inspection<br>(engine stop)                               | <ul> <li>Confirm long term durability of whole EGR system.</li> </ul>                                                                                                                | Inspection check                                                                 |
| Inspection check after long<br>term disuse<br>(1 <sup>st</sup> Dock) | <ul> <li>Confirm reliability of long term disuse EGR system.</li> </ul>                                                                                                              | Inspection check                                                                 |
| Evaluation of User-Interface                                         | <ul> <li>Confirm operability and maintainability of<br/>EGR system.</li> </ul>                                                                                                       | Hearing survey to crew                                                           |



#### Contents





- 1. Regulation trend
- 2. Compliance plan
- 3. Low Pressure EGR
- 4. Low Pressure SCR - LP-SCR system
  - Onboard test result
- 5. Comparison among Tier III technologies

# 4. SCR Development (Summary of SCMD project)



100

80

60

40

20

0

**Denitration rate (%)** 





<Summary>

Confirmed DeNOx rate more than 80% by onboard test in Super Clean Marine Diesel Proj.

Equivalent to load (%)

- ⇒ Results already submitted to IMO / MEPC
- Implementation of long-term durability test
  - ⇒ Quantification of performance changing rate
- Optimization of commercial SCR system
  - ⇒ Improving the prediction accuracy of SCR lifetime and minimizing life cycle cost

#### Contents





- 1. Regulation trend
- 2. Compliance plan
- 3. Low Pressure EGR
- 4. Low Pressure SCR
- 5. Comparison among Tier III technologies

#### 5. Life Cycle Cost Comparison between LP and HP EGR



WFS-1015 🕺 MITSUBISHI HEAVY INDUSTRIES MARINE MACHINERY & ENGINE CO., LTD.

# 5. Comparison among Tier II Systems



|                  |                  | Low Pressure<br>EGR<br>(MHI-MME)                              | Low Pressure<br>SCR<br>(MHI-MME)                          | High Pressure<br>EGR                                                                          | High Pressure<br>SCR                                                                                                                                             |
|------------------|------------------|---------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technical aspect | Feature          | EGR gas is<br>recirculated from<br>T/C outlet to T/C<br>inlet | After T/C SCR with<br>low temperature and<br>low pressure | EGR gas is<br>recirculated from<br>T/C inlet to<br>Scavenging air<br>trunk                    | Pre-T/C SCR with<br>high temperature<br>and high pressure                                                                                                        |
|                  | Perfor-<br>mance | <b>∠NOx80% within</b><br>SFOC approx. +1%                     | <b>∠NOx80% with</b><br>SFOC approx. +2%                   | ✓NOx80% with<br>SFOC +2~3%<br>EGR rate relatively<br>high? Or EGR gas<br>mixing insufficient? | <ul> <li>✓NOx80% with<br/>SFOC degradation<br/>approx. +1~2%</li> <li>Acidic ammonium<br/>sulfate deposit on<br/>EGE by slip NH3 in<br/>HFO operation</li> </ul> |

# 5. Comparison among Tier II Systems



|               |                  | Low Pressure<br>EGR<br>(MHI-MME)                                                                                                                               | Low Pressure<br>SCR<br>(MHI-MME)                                                                                   | High Pressure<br>EGR                                                                                                                                                                                          | High Pressure<br>SCR                                                                        |
|---------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| inical aspect | Com-<br>position | <ul> <li>Need exhaust gas<br/>pipe between<br/>Economizer and<br/>EGR Scrubber</li> <li>Because of LP<br/>system, EGR<br/>composition is<br/>simple</li> </ul> | <ul> <li>Need exhaust gas<br/>bypass for Global<br/>Area</li> <li>Flexibility of SCR<br/>reactor layout</li> </ul> | <ul> <li>EGR gas pipe is<br/>closed in engine</li> <li>Complicated<br/>composition</li> <li>because of EGR</li> <li>Cooler, 2 step</li> <li>Scrubber, T/C</li> <li>cutout valve, CBV</li> <li>etc.</li> </ul> | <ul> <li>Need much engine<br/>room space for SCR<br/>reactor upstream of<br/>T/C</li> </ul> |
| Tec           | Opera-<br>bility | Central control by<br>EGR Control Panel,<br>simple operation                                                                                                   | Able to control<br>separately from<br>main engine control                                                          | Complicated control<br>for T/C cutout, CBV<br>operation<br>synchronized<br>engine, etc.                                                                                                                       | Complicated control<br>for bypass valve<br>aiming for dynamic<br>characteristic             |

# 5. Comparison among Tier II Systems



|                 |       | Low Pressure<br>EGR<br>(MHI-MME)                                                                                                                                                                  | Low Pressure<br>SCR<br>(MHI-MME)                   | High Pressure<br>EGR                                                                                                                                                                                                                                                                | High Pressure<br>SCR                                                                                          |
|-----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| ect             | CAPEX | ∆<br>Low cost than HP<br>system because of LP<br>simple system                                                                                                                                    | O<br>Simple system                                 | ×<br>Expensive because of<br>HP system, and many<br>components                                                                                                                                                                                                                      | ▲<br>Expensive than LP<br>SCR<br>(guessed)                                                                    |
| Economical aspe | OPEX  | O<br>• No need of additional<br>boiling, thus, SFOC<br>degradation is small<br>• Less electric power<br>consumption for EGR<br>Blower<br>• Less maintenance<br>cost because of less<br>components | ×<br>Large urea cost even if<br>using LS-MDO ∕ MGO | <ul> <li>▲</li> <li>Large fuel cost for<br/>EGE additional boiling,<br/>thus, SFOC</li> <li>degradation is large</li> <li>Large electric power</li> <li>consumption for EGR</li> <li>Blower</li> <li>Large maintenance</li> <li>cost because of many</li> <li>components</li> </ul> | ×<br>Large urea cost even if<br>using LS-MDO ∕ MGO<br>Small fuel cost in case<br>of using HFO<br>availability |

# 5. Summary



- Mitsubishi Low Pressure EGR system has sufficient performance for meeting IMO Tier II regulations with low SFOC penalty.
  - Mitsubishi LP-EGR system has the merits: Simple system and operation, Low CAPEX and OPEX.
- Mitsubishi LP-EGR system can be applied into not only UE engine but also other brand engines widely because of easy combination for low pressure system.

# LP-SCR is also ready and proven.





Our Technologies, Your Tomorrow

# Thank you for your kind attention !!