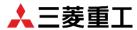
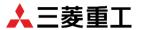
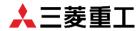

三菱重工業 GTCC事業説明会


Gas Turbine Combined Cycle

2025年10月7日


三菱重工業株式会社

- 1. GTCC事業概況
- 2. 三菱重工のGTCC技術
- 3. エナジートランジションへの取り組み



1. GTCC事業概況

© Mitsubishi Heavy Industries, Ltd. All Rights Reserved.

三菱重工業 会社概要

1884年 創立

77,274 社員数 (連結、2025/3/31時点)

256 グループ会社数 (連結、2025/3/31時点)

▶ 5兆271億円 売上収益

(連結、2024年4月1日~2025年3月31日)

事業内容

エナジー、プラント・インフラ、物流・冷熱・ドライブシステム、航空・防衛・宇宙

主な製品


コンプレッサ

航空機用エンジン

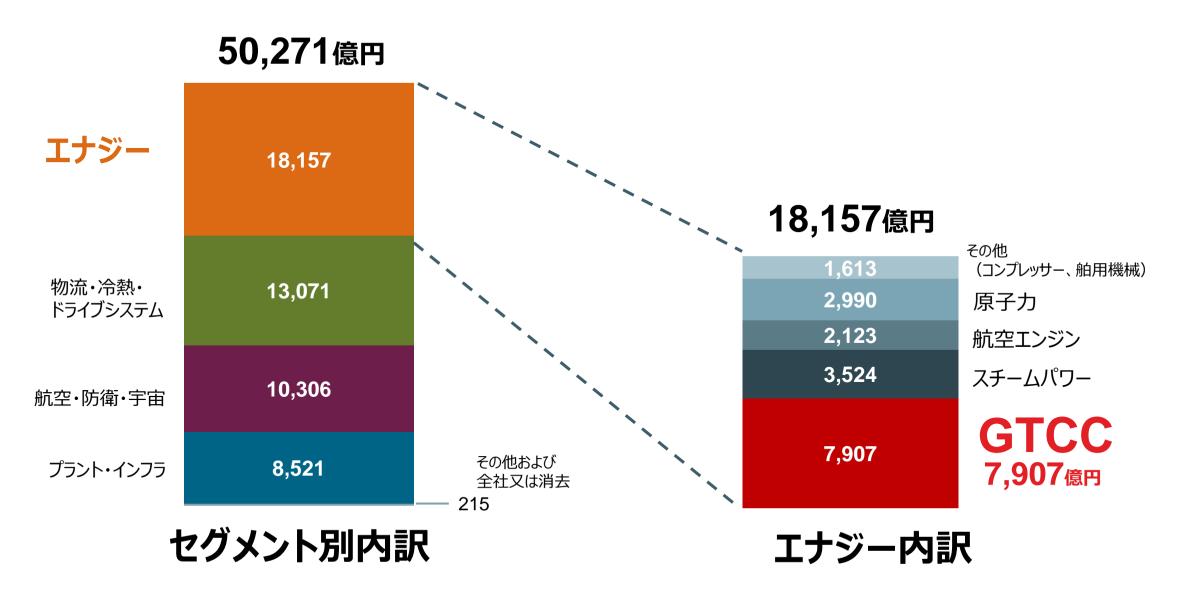
舶用機械

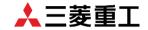
原子力発電設備

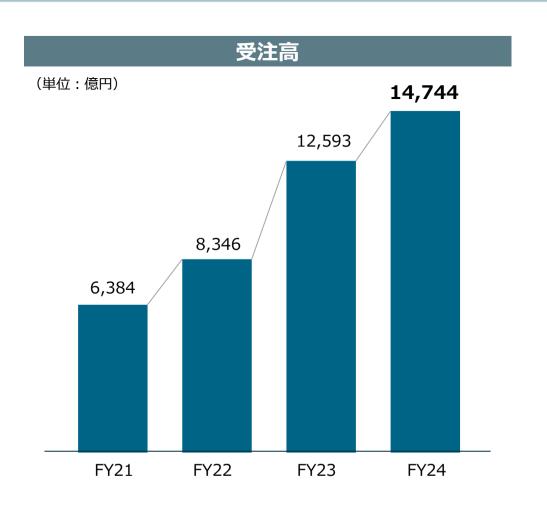
CO2回収プラント

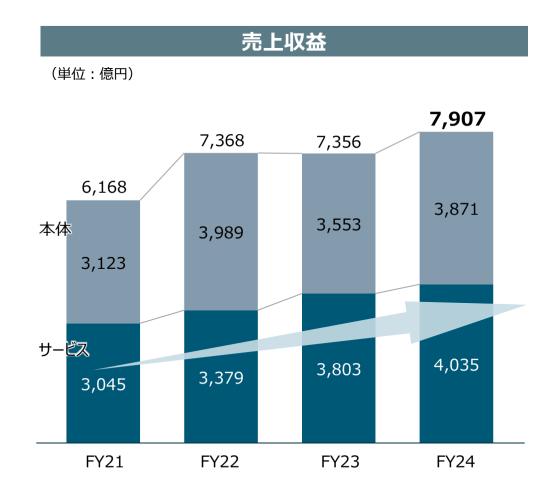
交通システム

都市ごみ焼却発電プラント

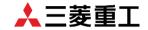

宇宙関連機器


護衛艦





GTCC売上収益内訳(2024年度決算ハイライトより)



- 本体受注時に長期アフターサービス契約を締結するケースも多く、将来の売上収益を確保
- ガスタービン主要部品の増産体制を構築中

ガスタービン受注残(2024年度、及び2025年度第1四半期決算説明より)

大型ガスタービン 受注台数・契約残台数

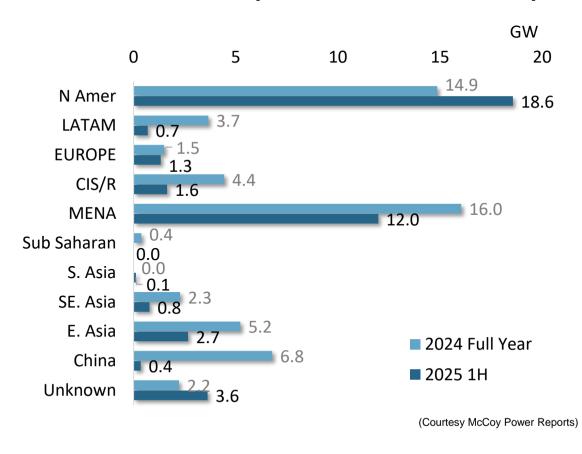
	2023年度	2024年度
米州	7	11
アジア	9	5
EMEA	-	9
その他	1	-
受注台数 合計	17	25
契約残台数	36	48

FY24-1Q	FY25-1Q
4	6
2	2
-	-
-	-
6	8
38	53

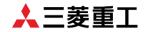
【参考】中国の協業先企業における受注台数

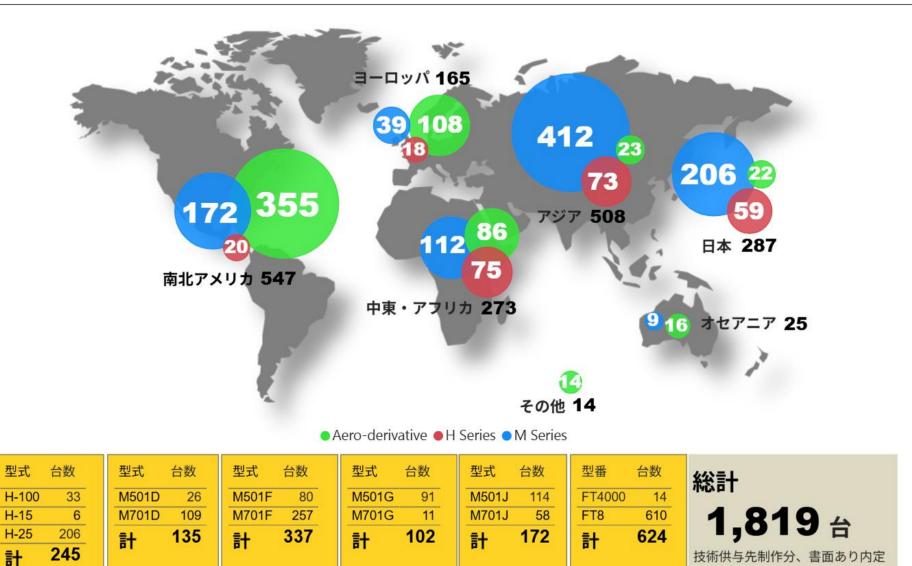
	2023年度	2024年度
受注台数	21	7

FY24-1Q	FY25-1Q		
_	3		


世界のガスタービン市場規模

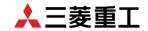
- 2024年の世界のガスタービン市場は、2018年以来最高の57.4GWに到達
- 2025年上半期ですでに41.7GWが確定。2024年を超えるペースで伸長。
- 地域としては、北米、中東が需要を牽引。


世界のガスタービン市場規模 **⊘** 60 50 40 30 50.4 1-6月 43.6 20 40.3 39.7 34.6 10 0 2019 2020 2021 2022 2023 2024 2025


地域別ガスタービン市場(2024年通期及び2025年上半期)

© MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

三菱重工のガスタービン受注実績



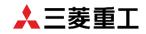
他、中小型GT:204

2025年 8月31日時点

案件含む

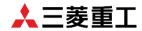
三菱重工のガスタービン営業拠点

納入国



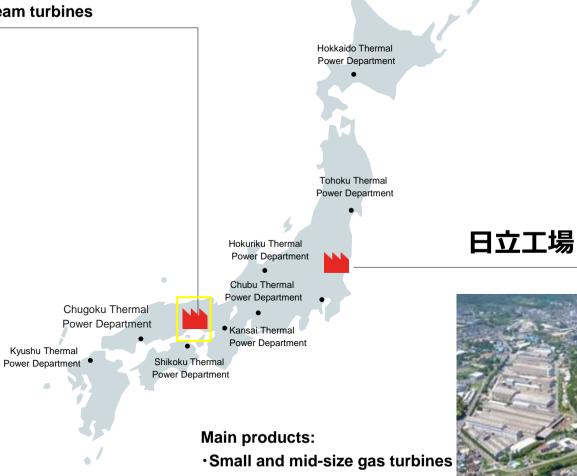
営業拠点

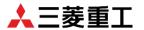
© Mitsubishi Heavy Industries. Ltd. All Rights Reserved.


三菱重工のガスタービン製造・サービス拠点(世界)

■ 当社は、主要なガスタービン部品の製造・修理工場を世界に10カ所 有しています。

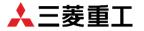
三菱重工のガスタービン製造・サービス拠点(日本)

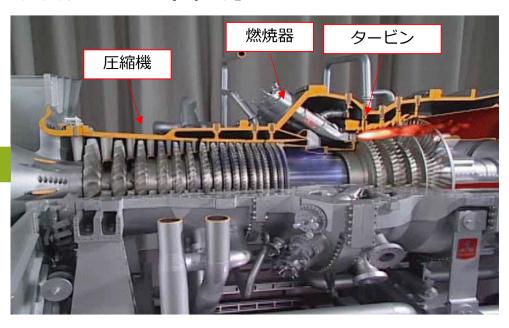

高砂製作所


Main products:

- ·Large frame gas turbines
- ·Steam turbines

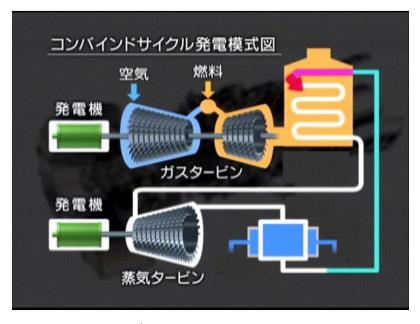
・国内拠点


·Steam turbines


2. 三菱重工のGTCC技術

© Mitsubishi Heavy Industries, Ltd. All Rights Reserved.

■ ガスタービンのタービン入口温度を上昇させることで、コンバインドサイクルの効率が向上


【ガスタービンの仕組み】

発電機

- 圧縮機、燃焼器、タービンで構成
- 燃料の燃焼によって得られた高温高圧のガス を膨張させてタービンを回し、燃焼ガスから 動力を得る熱機関

【コンバインドサイクル発電プラントの仕組み】

ガスタービンで発電し、その排熱を利用して発生させた蒸気で蒸気タービンを回転させ、さらに発電

1970-

1950-

1880-

日本のインフラ整備

1884 三菱重丁業創立

1908 蒸気タービン初号機完成

日本の高度経済成長に 貢献

1960 技術提携によるガスタービン 事業開始

燃料多様化と エネルギー高効率化に 対応するソリューションを 世界中に提供

1986 高効率ガスタービンを独自開発

2010-

カーボンニュートラル社会をリードする技術を 開発

2011

J形ガスタービン 入口温度1,600℃実証完了

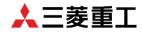
2018

大型ガスタービンの開発において30%の水素混焼試験に成功

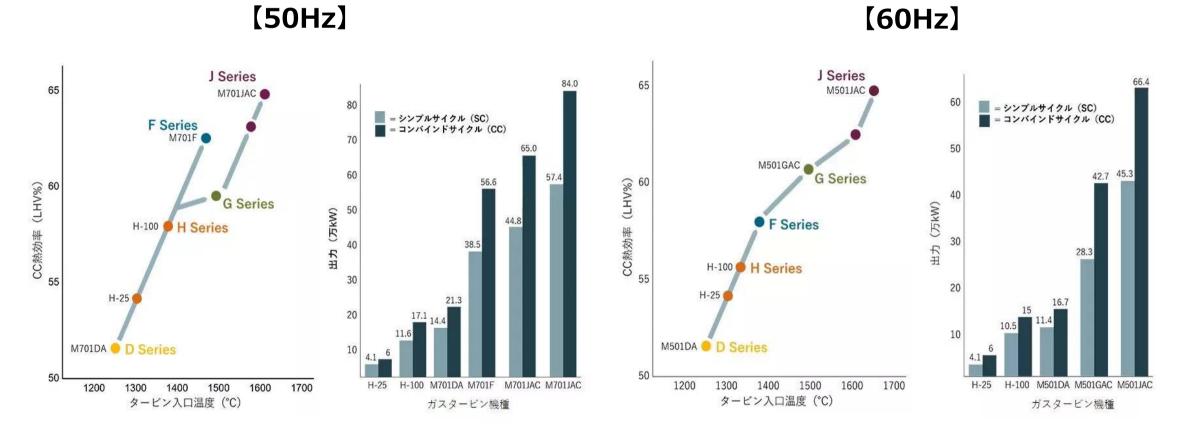
2020

次世代1,650℃級ガスタービンM501JAC運転開始

2021

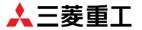

アンモニア専焼ガスタービンの開発開始

2025

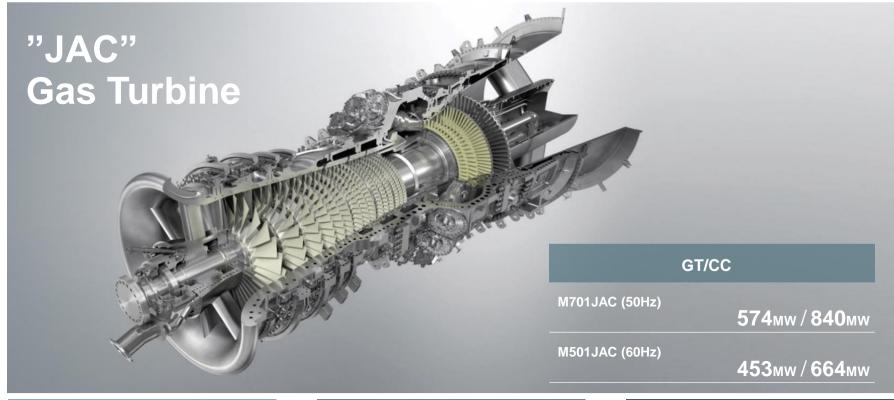

J/JAC形ガスタービンの稼働時間が300万時間突破、累計受注172台超

1868-日本の産業革命 **1950-**日本の高度経済成長 **1973 / 1979** オイルショック

2015 パリ協定



■ 三菱重工は小型から大型まで、幅広いラインアップでお客様の様々なニーズに対応



M701JAC形のGTCC出力は840MW(50Hz)、約200万世帯の電力に相当 これは、横浜市の全世帯(180万世帯)に電力を供給できる規模

Mitsubishi Heavy Industries, Ltd. All Rights Reserved.

■ 三菱重工は世界をリードする発電技術で脱炭素社会の実現に貢献

Type2

水素30%混焼燃焼器を 2018年に開発完了し、 2023年、第二T地点で 水素燃料30%混焼 運転に成功

高効率

64%のCC効率

- 高圧力比圧縮機(25:1)
- 強制空冷燃焼器
- 先進TBCの超厚膜化

信頼性

300万時間超の運転実績

- 受注台数: 172台 (J/JACシリーズ 2025年8月31日時点)

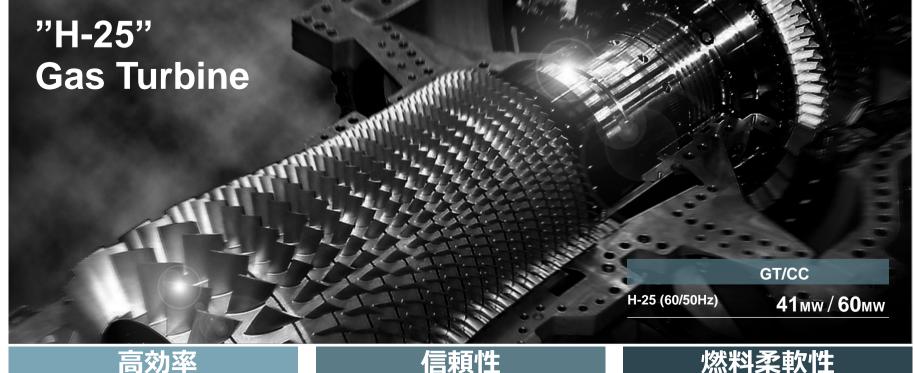
燃料柔軟性

多様な燃料への対応性

- 化石燃料(天然ガス・石油)
- クリーン燃料 (**水素**)

Type3

水素100%専焼燃焼器


高砂水素パークにある

H-25形ガスタービン

を2024年度に

で実証開始

- コージェネレーションシステムに最適な30-40MW級GT、30年以上の運転実績あり
- 水素、アンモニア向け燃焼器を開発中

高効率

- 受注台数: 206台

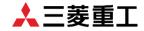
(2025年8月31日時点)

1,250万時間超の運転実績 多様な燃料への対応性

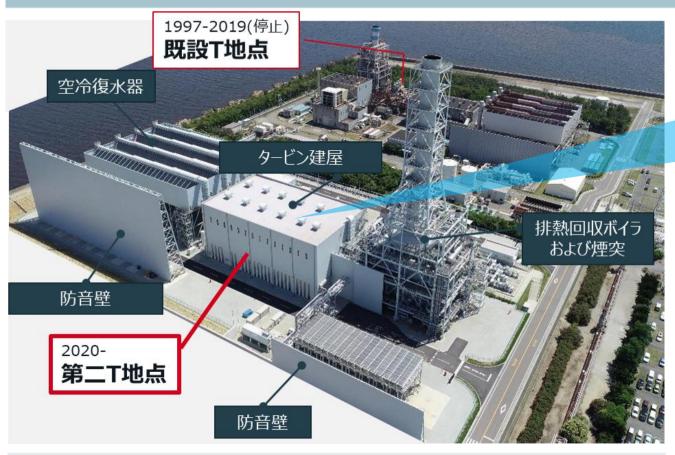
- 化石燃料 (天然ガス・石油)
- クリーン燃料 (**水素**)

80%超のコージェネ

レーション効率


- シンプルサイクル

- コンバインドサイクル 54.0%

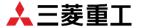

- コージェネレーション 80.0%超

蒸気量 79ton/h

ガスタービンの実証(実証設備複合サイクル発電所(第二T地点))

■ 2020年7月1日、新たな実証設備複合サイクル発電所を稼働し、給電運用開始

1997年より商用発電しながら新型ガスタービンの実証をしてきたが、2020年に完全リニューアル。389MW⇒566MWに設備更新し、 更なる高性能機の実証中。



	既設T地点	第二T地点
出力 (大気温度5℃)	389MW	566MW
ガスタービン型式	M501J形	M501JAC形
運用開始	1997年6月	2020年7月
タービン入口温度	1600 °C	1650 °C
燃焼器冷却方式	蒸気冷却	空気冷却
コンバインド効率*	62%LHV	>64%LHV

*コンバインド効率: M501J形、JAC形 1on1 ISO標準大気・天然ガス・吸排口ス含まない

itsubishi Heavy Industries, Ltd. All Rights Reserved.

ガスタービンの実証(高砂水素パーク)

水素利用 (発電)

中型GT 40MW

H-25ガスタービン 大型GTCC 566MW

M501JACガスタービン

3 水素発電 水素利用 水素製造 水素貯蔵 2024年4月

多様な水素製造技術

再工ネ資源豊富な地域に向けた グリーン水素製造技術

アルカリ水電解装置

・稼働開始

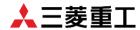
高温水蒸気電解装置 (SOEC)

・デモ運転開始

AEM水電解装置

再工ネ資源に恵まれない地域に向けた 技術ターコイズ水素製造技術

メタン熱分解


水素貯蔵

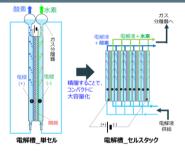
水素ボンベ (高圧水素貯蔵) 350本 →1050本

SOEC: Solid Oxide Electrolysis Cell

実証スケジュール 弊社高砂水素パーク

■ 2023年9月 : アルカリ水電解装置の稼働開始、その後順次SOEC、ターコイズ水素を実証予定

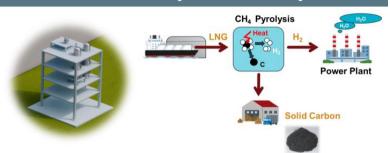
■ 2023年11月 : 大型ガスタービン(450MW)にて30%水素混焼実証を実施


■ 2024年 : 中小型ガスタービン(40MW)にて100%水素専焼実証を開始

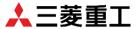
■ 2024-25年 : 水素貯蔵設備を117,000Nm³(1050本)に増強済

		2023年 2	2024	2025	2026	/27	′28 > ′29
	アルカリ水電解	実証運転	中		商用運転開始 北米Advanced	(40台) d Clean Energy Stora	ge
水素製造設備	SOEC		400kW級デモ運転			数MW実証運転*	61 商用化*1
	メタン熱分解					XIVIVX 大趾 建拟	1 向州化 1
水素貯蔵設備	水素貯蔵	350本	增強(1,050				*1 計画
ガスタービン ままった	大型ガスタービン	30%水素混	昆焼実証達成	50%水素混焼 証達成(G形) 北米		用運転開始 北米	
実証スケ ジュール	中小型ガスタービン	大型ガスタービン30%水素運転	100%専	30%超 混炼 焼実証	克*1		

アルカリ水電解

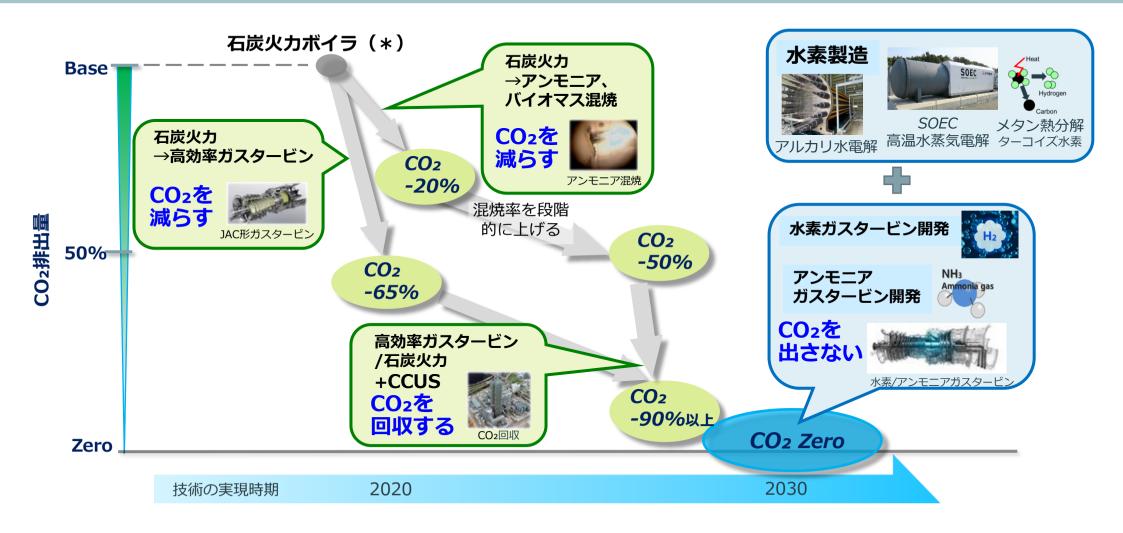

SOEC(高温水蒸気電解)

SOEC OFC 技術の応用



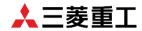
メタン熱分解(ターコイズ水素)

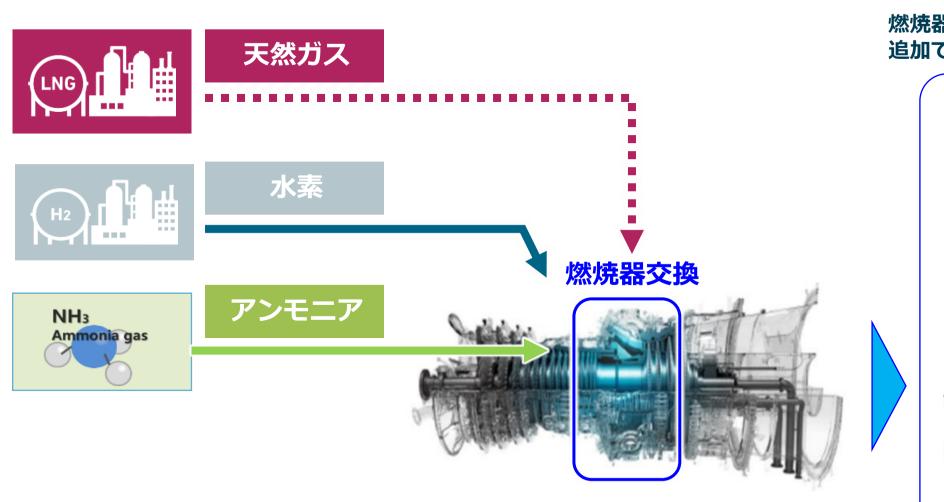
© Mitsubishi Heavy Industries, Ltd. All Rights Reserved



3. エナジートランジションへの取り組み

© Mitsubishi Heavy Industries, Ltd. All Rights Reserved.

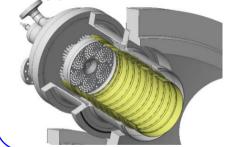

■火力発電の脱炭素化を実現するには、CO2を「減らす」・「回収する」・「出さない」の道筋がある

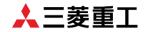

(*): 亜臨界圧石炭焚きボイラCO2排出量を基準

CCUS: Carbon dioxide Capture, Utilization and Storage

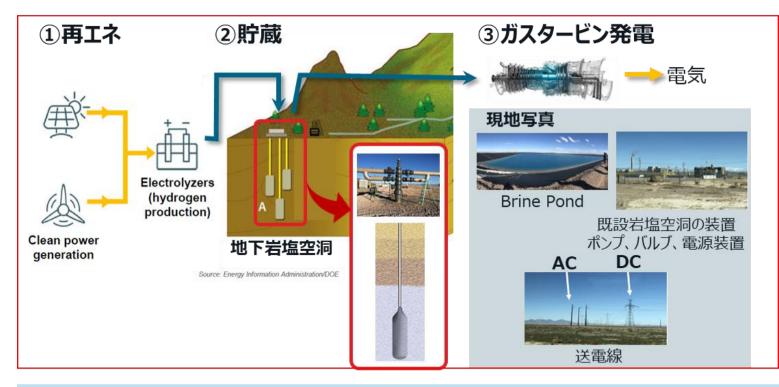
既存ガスタービンから 水素/アンモニア燃料への転換

- 天然ガス焚GT から 水素/アンモニア焚きGT への改造は、燃焼器、燃料供給システムの追加で対応可能
- 本体は流用できるため、改造範囲が最小限であることが特徴

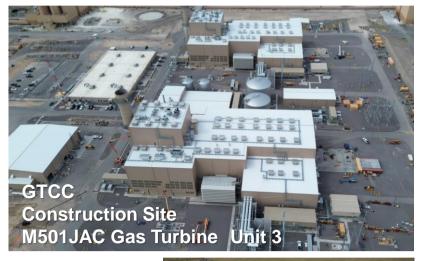

燃焼器交換と燃料系統の 追加で水素・アンモニア仕様へ


Type2

Type3

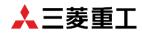


米国における水素ガスタービンプロジェクトの例①



■ Advanced Clean Energy Storage Project (米国)

- ① 西海岸の安価な再工ネ電力で水電解によりグリーン水素製造
- ② 北米に豊富に存在する地下岩塩空洞にそのグリーン水素を貯蔵
- ③ 電力必要時に岩塩空洞よりグリーン水素を取り出し、ガスタービンで発電


- 当社は水素焚き501JAC形ガスタービン840MWを納入済
- 2026年に水素30%混焼 / 2045年までに100%専焼を計画

■ ジョージア・パワー(米)と、マクドノフ・アトキンソン発電所にて世界最大の水素50%混焼実証に成功

仕様 Type 2 予混合燃焼器

M501GAC (283MW) 大型ガスタービン

水素混焼運転を実施

混焼率

20% (2022年)

50% (2025年)

写真 監視モニタ 水素混焼率 > 50 vol.%

図. 水素追設説明

2025-6-16 press release

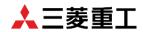

https://power.mhi.com/regions/amer/success-stories/mcdonough https://www.mhi.com/jp/news/25061702.html

写真 水素混焼運転の全景 および プロジェクト関係者 (2012運開・既設GTCC発電所)

- 出力フルロード条件 および 部分負荷条件において、計画通り水素50%超混焼を達成した
- 水素系統ロジックおよび燃焼器の運用を安全に実施し、NOx 15ppm以下を満足した

Mitsubishi Heavy Industries, Ltd. All Rights Reserved.

文i	献	URL (QRコード)	URL	文献		URL (QRコード)	URL
【三菱重工】 高砂製作所案内	TAKASAGO MACHINERY WORKS		https://www. mhi.com/jp/c ompany/locati on/takasagow /catalogue.pdf	【学研】 まんがでよくわかる シリーズ 特別編 _SDGsのひみつ	マ南 まんがたよくわするシリーズ W利は SDGS のひみ エネルギーをみんなに そしてクリーンに 三男王ICのひゅみ		https://bpub.j p/gakken- himitsu/item/ 51000000396 4/
【三菱重工】 第二T地点 (実証設備複合 サイクル発電所)	第二丁地点 東京教育会でから発展所		https://power. mhi.com/jp/c atalogue/pdf/t -point2.pdf	【三菱重工】 カーボンニュートラ ルハンドブック	ANT THE STREET OFFICE OF STREET OFFICE OFFI		https://www.mhi.com/jp/company/aboutmhi/carbon-neutral/pdf/cnhandbook 2022.pdf
【三菱重工】 GTCC (ガスタービンコンバ インドサイクル発電 プラント)	★三英田工 GTCC		https://power. mhi.com/jp/c atalogue/pdf/ gtcc.pdf	【三菱重工】 水素発電 ハンドブック	水素発電 ハンドブック (第3版)		https://power. mhi.com/jp/c atalogue/pdf/ hydrogen jp.p df

之三菱重工