Nuclear Energy Systems Business Operation

June 3, 2010

Akira Sawa
Director, Executive Vice President,
General Manager,
Nuclear Energy Systems Headquarters

Contents

- 1. Highlights in Corporate News, 2009-2010
- 2. Results of the 2008 Business Plan
- 3. Overview of the 2010 Business Plan
- 4. Operation in Global Business
- 5. Operation in Domestic Light Water Reactor Business
- 6. Operation in Nuclear Fuel Cycle Business
- 7. Value Chain Innovation

1. Highlights in Corporate News, 2009-2010

Projects Delivered

The latest PWR power plant started commercial operation

Hokkaido Electric Tomari unit 3 (Dec 2009)

Inheriting plant

technologies

Tomari unit 3 (right)

1st plutonium thermal operation started in Japan

Kyushu Electric Genkai unit 3 (Dec 2009) Shikoku Electric Ikata unit 3 (Mar 2010)

Genkai No. 3 reactor MOX fuel loaded

Realizing Major Projects

3rd US-APWR selected

Dominion Resources
North Anna unit 3
(May 2010)

Existing North Anna unit 1/2

Plant export starts in earnest

Large-scale order received for nuclear fuel cycle

Japan Nuclear Fuel Limited Rokkasho MOX fuel fabrication plant (June 2009)

Rokkasho MOX fuel fabrication plant (J-MOX)

Contribution to Japanese nuclear fuel cycle

Nuclear Fuel Cycle Advanced

2. Results of the 2008 Business Plan

Orders, Sales and Profit

Steady business mostly in domestic maintenance services, nuclear fuel cycle and components export

Major Actions and Achievements

Steady business promotion and construction of business foundation towards global deployment

Overseas business	ODominion selected US-APWR, a 1,700MWe class large-sized PWR, the third unit following the 2 units selected by Luminant. OThe basic design of ATMEA1, a 1,100 MWe class mid-sized PWR, completed. Now being promoted to Jordan and other countries.
Domestic business	OSales for maintenance services expanded mainly because of earthquake proofing works and preventive maintenance services to improve plant capacity factor. OHokkaido Electric Tomari unit 3 started commercial operation. Steady progress in Tsuruga units 3&4 and Sendai unit 3 projects. OLeading role for Mox fuel usage in LWRs, J-MOX and FBR in the field of nuclear fuel cycle
Business bases	OStrengthening alliance and management of affiliate companies: MNES in the US, ATMEA, a joint venture between MHI and AREVA in France, and MFBR dedicated in development of FBR technology in Japan, reorganization of MNF for complete fuel supplier and establishment of MNEC by unifying domestic engineering subsidiaries ONow prepared for 2 plant orders annually by securing the necessary human resources and reinforced production facilities

LWR: Light Water Reactor; MNES: Mitsubishi Nuclear Energy Systems, Inc.; ATMEA: A joint venture with AREVA; MFBR: Mitsubishi FBR Systems, Inc.; MNF: Mitsubishi Nuclear Fuel Co., Ltd.; MNEC: MHI Nuclear Engineering Co., Ltd.

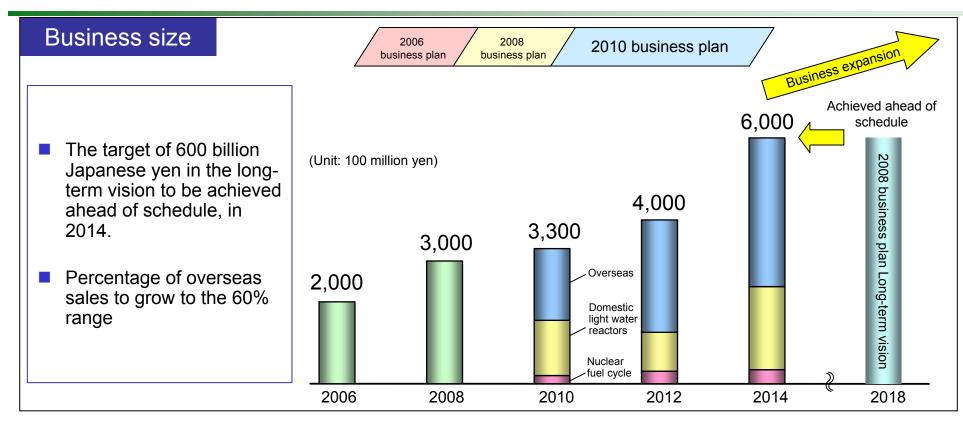
3. Overview of the 2010 Business Plan

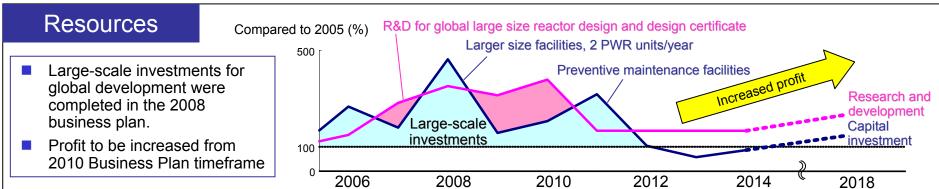
Business Environment, Vision and Strategy of the 2010 Business Plan

Business Environment

- Expanding nuclear power plant market both in industrialized and developing countries
- Promotion of nuclear power introduction in Japan toward reduction of CO₂ emissions by 25%
- Acceleration of nuclear fuel cycle for stable LWR operation and energy security

Vision


A Leading Company in the Global Nuclear Energy Field


Sophisticated Production Capabilities Contribute to Low-Carbon Society

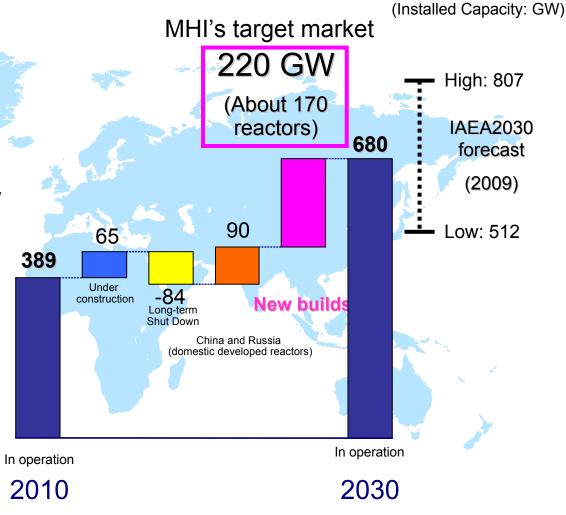
	Business Strategy	Value Chain Innovation
Overseas business	Changing business model from component export to plant export	Process innovationIntroduction of strategic ICT -
Domestic LWR business	Strongly promoting preventive maintenance services for existing units and construction of new APWRs	 Production innovation Strengthen manufacturing capability toward supplying 2 units per annum -
Nuclear fuel cycle business	Deploying solution business in nuclear fuel cycle and leading FBR development as a core company	Supply chain managementConstruction of global SCM -

Numeric Targets of the 2010 Business Plan

4. Operation in Global Business

Changing the business model from component export to plant export

Market Volume for New Build Projects



Global expansion to reduce CO₂ emissions and strengthen energy security

Installed nuclear capacity to grow by a factor of 1.7 (2010→2030)

MHI's target market 220GW (about 170 reactors)

(Note) Excluding China and Russia

Market Characteristics and Our Strategy

	Industrialized countries market	Developing countries market
Systems of laws and regulations	-Already established	- Under establishment
Bilateral treaty	-Already signed with major countries (US, UK, France, Canada, Australia, China and EURATOM)	- Need to be signed
Operating capabilities	-Experienced operators	-Operators to be trained because of little operations experience
Scope of supply	-Limited to plant construction	-Operation, maintenance and front-end included in many cases
		Dramation based on a nublic private

MHI's strategy

MHI-centered business development

- Export of MHI's strategic nuclear reactors for global market
- -Financial support to be necessary (JBIC, NEXI, etc.)

Promotion based on a public-private sector partnership model

- -Government: Support through the development of laws and regulations and financing
- Electric power companies: support for operation and maintenance
- -MHI (manufacturer): Export of plants

Key Markets for New Plants and MHI's Actions

Acquiring more than 20% of the global market (two unit orders per annum)

	North, Central and South America	Europe and Middle East	Japan and Asia
Strategic reactors	APWR ATMEA1"	EU- ATMEA1 ATMEA1	APWR ATMEA1 (Including the improved Tomari unit 3 type
Industrialized countries market	United States Further orders pursued for US-APWR followed by selection of US-APWR by Luminant (Commanche Peak units 3&4) and Dominion (North Anna unit 3)	Aggressive sales activity for Finland and other countries	Japan Steady progress in Tsuruga units 3&4 and Sendai unit 3 projects
Developing countries market	Marketing expanded with market needs in Central and South America	Jordan Currently working with ATMEA with support from the Japanese and French governments	Vietnam Approaching with the "All Japan" fleet India Taking steps in this promising market with government support

Global Lineup of Strategic Nuclear Reactors

Meeting the market needs around the world with different types of reactors

Reactor type	US- APWR	EU	ATMEA1 TM
Output	1,700 MWe class PWR (Large reactor: 60 Hz)	1,700 MWe class PWR (Large reactor: 50 Hz)	1,100 MWe class PWR (Intermediate reactor: 60 Hz/50 Hz)
Thermal output	■ 4,451 MWth	Same as left	■ 3,150 MWth
Concept	Developed for the United States on the basis of APWR	Developed for Europe on the basis of APWR	Developed for all of the world by combining technologies of MHI and Areva
 Full four train Meeting the requirements of U.S. severe accidents Protection against aircraft collision 		 Same as left Meeting the requirements of European severe accidents Hybrid-type safety system (high-performance pressure-charged tank) 	
Operation *	■ 24-month operation	Load following function	Ability to use MOX

^{*} Depending on requirements by country, region, and electric power company

Selection of US-APWR for North Anna Unit 3 by Dominion Resources

US-APWR selected from several candidate reactor types (May 2010)

-Third US-APWR selection following Comanche Peak unit 3&4 of Luminant-

Critical points led to customer's decision

- Proven safety, reliability and high technology
 - Experience with 24 reactors with PWR full turnkey construction in Japan
 - Achievements in delivering major components to Dominion Resources for Surry unit 2, North Anna unit 1, Millstone unit 2 and Kewaunee

Formation for construction project in the U.S

■ EPC alliance with U.S. partners such as URS

Existing North Anna units 1&2

Dominion Resources

One of the largest electricity suppliers in the United States

Output capacity at owned facilities: 27 GW, 5.8 GW of which is generated by nuclear power with seven reactors (No. 3 in the United States)

Sales (2009): 15.1 billion dollars

Number of employees: about 18,000

• Headquarters: Richmond, Virginia

URS Corporation

One of the world's major engineering companies, providing design, construction management, and other services in more than 30 countries

No. 2 in the US Top 500 Design Firms (ENR Magazine, April 2010)

Sales (2009): 9.25 billion dollars

Number of employees: about 45,000

Headquarters: San Francisco, California

US-APWR: 1,700 MWe class APWR for the U.S. market

Progress at Comanche Peak Units 3&4 of Luminant Generation

Steady progress toward plant construction

- ESA agreement signed in 2009; detail design work ongoing for accurate cost estimates
- Supporting Luminant Generation for application for DOE's loan guarantee, as the budget for DOE financing expected to be expanded from 18.5 billion dollars to 54.5 billion dollars
- Accelerating design certification and combined licensing processes by DCWG (Design Centered Working Group) consisting of Luminant, Dominion, and MHI

Glen Rose, Texas

Artist's rendition of Comanche Peak units 3&4

2007	2008	2009	2010	2011	2012~	2020
Selection of US-	H F VVI	Establishment of and ESA agreem Jan				"
Dec		Design certification review			Start-up of units 3&4	
	Sep	Combined	license review			

Market Developments for EU-APWR

Participation in the large-sized reactor market in Europe

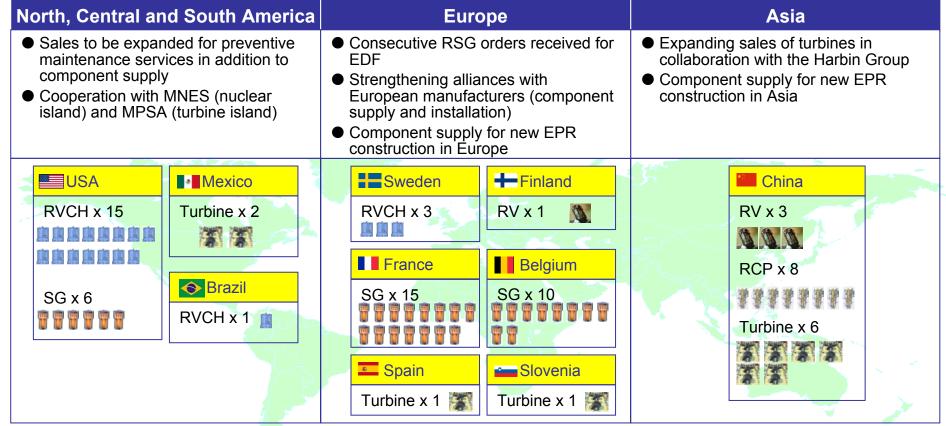
- The Finnish government selected TVO as one of the two electric power companies for the potential construction projects. (TVO selected EU-APWR as one of the candidate reactor types.)
- Sales promotion in Switzerland, Sweden, the United Kingdom and others countries.
- Applied for conformity review of European Utility Requirements (EUR) (Responding to requirements particular to Europe, such as responses to serious accidents)
- Signed strategic partnership agreements with IBERDROLA Ingenieria Y Construccion of Spain and Weir of the United Kingdom
- Preparing to establish an European base

EU-APWR: 1,700 MWe class APWR for Europe

Sales Promotion for ATMEA1

Actively promoting in the global mid-sized reactor market

- Responding to the Jordan project with support from the Japanese and French governments
- Currently marketing ATMEA1 to potential customers in more than ten countries in the Middle East, Eastern Europe, Southeast Asia, Central and South America, and other areas
- Combining the world's top-level, proven technologies of MHI and AREVA
- The basic design completed. An application for a review of the safety options by the French Nuclear Safety to be scheduled.


Overseas Maintenance Business Initiatives

Boosting orders for overseas maintenance business as the Japanese NO.1 supplier of major heavy components for overseas market

- Organizing an overseas maintenance services network in alliances with local partners and by utilizing MHI's overseas factories
- Aiming to receive orders for components supply with installation and bolstering sales based on preventive maintenance technologies in Japan (advanced inlay, etc.)
- Regional strategies and major component orders

(As of May 31, 2010)

RV: Reactor vessel

5. Operations in Domestic Light Water Rectors Business

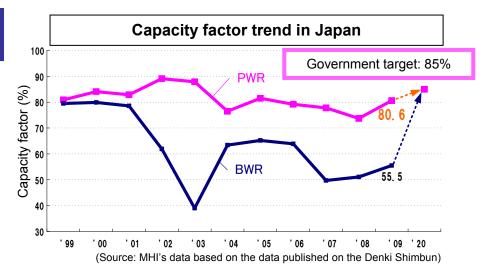
- Preventive maintenance activities
- The new build APWR construction

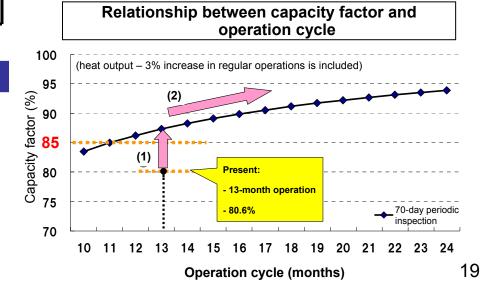
Maintenance Services in Japan

Reduction in CO₂ emissions through preventative maintenance activities

Correlation between capacity factor and reduction in CO₂ emissions of PWRs in Japan

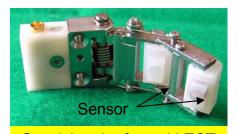
 3.5 million tons of CO₂ emissions reduced by achieving availability factor of 85% (government target)


	2009 results	2020 target	
Capacity factor	80.6%	85%	
Annual power generation	136.7 billion kWh	185.7 billion kWh	
Annual reduction in CO ₂ emissions	2009 figure as the basis for comparison	-3.5 million tons	

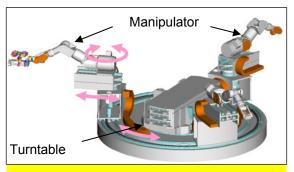


- (1) Minimizing unscheduled shutdown by preventive maintenance activities
- (2) Extended operation cycle

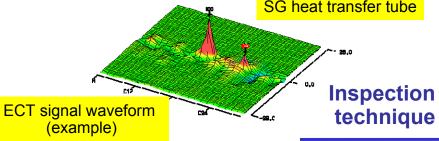
85% capacity factor achieved



Technologies Supporting the Maintenance Services



Special probe for weld ECT inspection


Inspection robot for SG heat transfer tube

Advanced INLAY system

Automated remote welding

tech

Shot peening stress improvement

Stress improvement technique

Water jet stress improvement

Heavy component replacement

Reactor internal replacement work

Steam generator replacement work

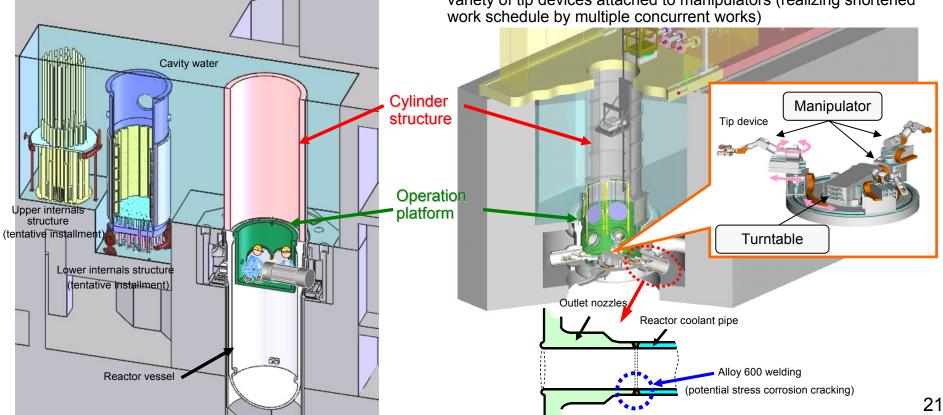
Main control board replacement work

Preventive Maintenance Activities; Minimizing Unscheduled Shutdown with Advanced INLAY Device

Our Technologies, Your Tomorrow

Automated preventive maintenance works for stress corrosion cracking on alloy 600 welding of inlet and outlet nozzles of reactor vessel

Reducing exposure dose and shortening work schedule by remote-controlled automatic and multiple concurrent works

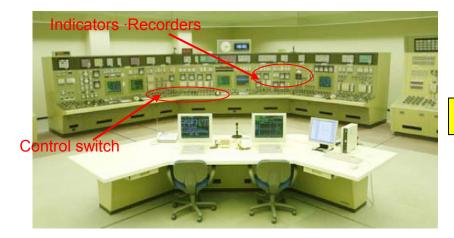

Existing method

Installation, replacement and dismantling by operators in high radiation area

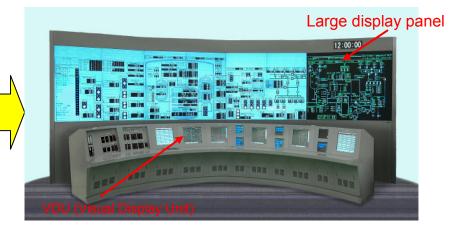
New method

 Significant exposure dose reduction by remote-controlled automatic overlay welding

 High-precision cutting, inspection, welding and maintenance by a variety of tip devices attached to manipulators (realizing shortened work schedule by multiple concurrent works)


Preventive Maintenance Activities; Improving Operability by Advanced Digital Main Control Board

Replacement with Advanced Digital Main Control Board


- Digital instrumentation and control (I&C) system applying computerized plant protection and control system with prompt response and high reliability
- Disconnecting and connecting Approx. 10,000 cables and replacement of 200 control panels in a short period

Conventional main control board

 Monitoring by <u>indicators and recorders</u>, plant operation by <u>individual control switches</u> (operators need to move around for monitoring and operation)

Advanced digital main control board

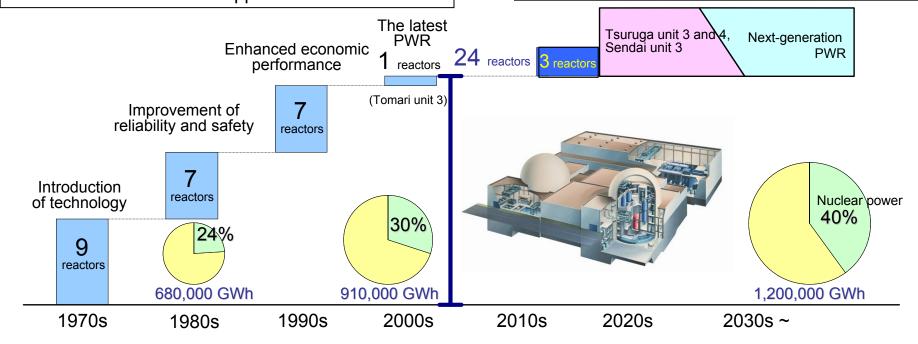
- Monitoring by <u>large display panel and VDUs</u>, plant operation by <u>touch-panel on VDU screens</u> (operators can be in a seated position for monitoring and control)
- Reducing the operator workload and improving operability

New build projects and MHI's Actions

Tsuruga units 3 and 4 and Sendai unit 3 proceeding Active responding to plant replacement demand

Tsuruga unit 3 and 4

Revised seismic evaluation in establishment license application submitted


⇒ Safety review accelerated

Sendai 3

First public hearings finished

⇒ Preparation for establishment license application started

- Nuclear share of total electricity generation in Japan to be increased from 30% to the 40% range to reduce CO₂ emissions
- Development of next-generation PWR for plant replacement demand that is expected to arise from 2030

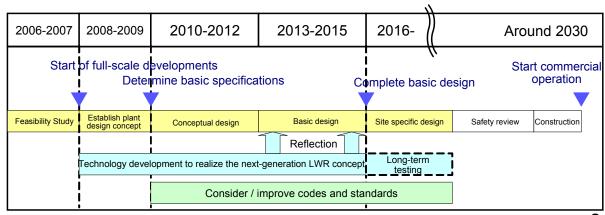
Next Generation PWR Development as a National Project

Sophisticated 3S+3E Achievable Autonomic Type Plant

■ Targeting plant replacements in Japan from 2030 and the global market

3S

3E


Safety Security Safeguard Environment Efficiency Economy

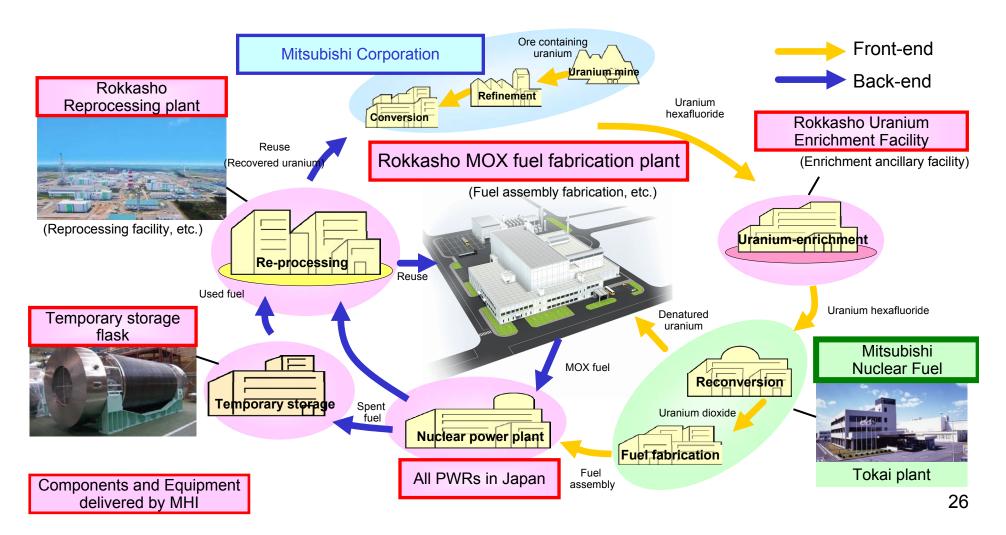
Autonomic Type

No external support required in case of accident

- (1) The world's highest efficiency
- (2) Seismic isolation design as standard
- (3) Short construction period
- (4) Reduction of generation cost by long-life fuel and innovative core
- (5) Advanced autonomous safe design
- (6) Resistance to aircraft collisions, Tsunamis, etc.

6. Operation in nuclear fuel cycle business

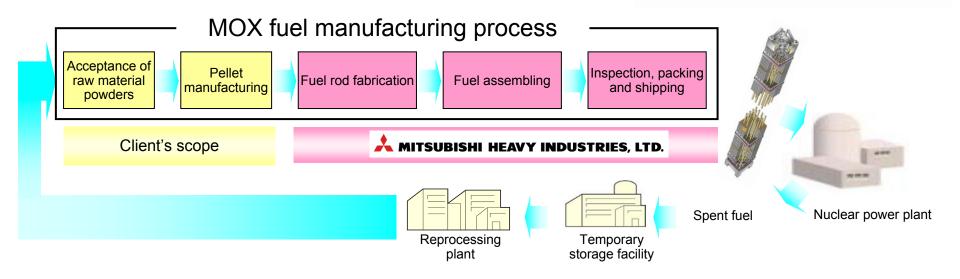
Deploying the nuclear fuel cycle solution business


Leading FBR development as a core company

Nuclear Fuel Cycle; Providing Total Solutions

Participation in the entire process of the nuclear fuel cycle as the Mitsubishi Group

- Stable nuclear fuel supply by the Mitsubishi Group (MHI, Mitsubishi Corp. and Mitsubishi Nuclear Fuel)
- MHI delivered components and equipment for plants in front-end, power generation and back-end.


Order Received from Japan Nuclear Fuel Limited for Rokkasho MOX Fuel Fabrication Plant

Executing Japan's first MOX fuel fabrication plant construction

- Product: MOX fuel assembly for domestic light-water reactors (PWR and BWR)
- Capacity: 130 t-HM*/ year
- Completion: March 2016 (scheduled)
- MHI's scope of supply: fuel rod fabrication facility, fuel assembling facility, etc.

^{*} t-HM ((tons of heavy metal): a unit representing the total mass of metallic uranium and metallic plutonium

Leading FBR Development as Core Company

Leading to the conceptual design completion by 2015 as a core company together with the government

- Establishing a plant that meets user needs
- MHI to be in charge of the construction of a large-scale sodium testing facility
- Verification of technology using MHI's own sodium testing facility

- Reflecting knowledge through PWR projects
- Enhancing safety and economic performance with innovative basic technologies
- Aiming to be the international de facto standard

2010 (May)

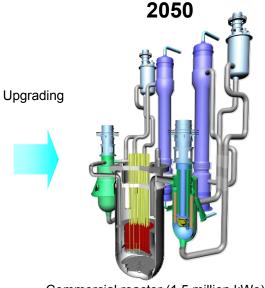
Restart up

FBR Monju (280,000 kWe)

Demonstration of power generation and establishment of sodium technology

2015

Conceptual design completion



Demonstration reactor (up to 750,000 kWe)

Demonstration of innovative technologies

2025

Commercial reactor (1.5 million kWe) (Source: JAEA-Research 2006-042)

(Source: METI Nuclear Power Panel's third international strategy review subcommittee reference 2-2)

7. Value chain innovation

- Process innovation
 - Introducing strategic ICT
- Production innovation
 - Strengthening manufacturing capabilities
- Supply chain management
 - Constructing a global SCM

Process Innovation; Introducing Strategic ICT

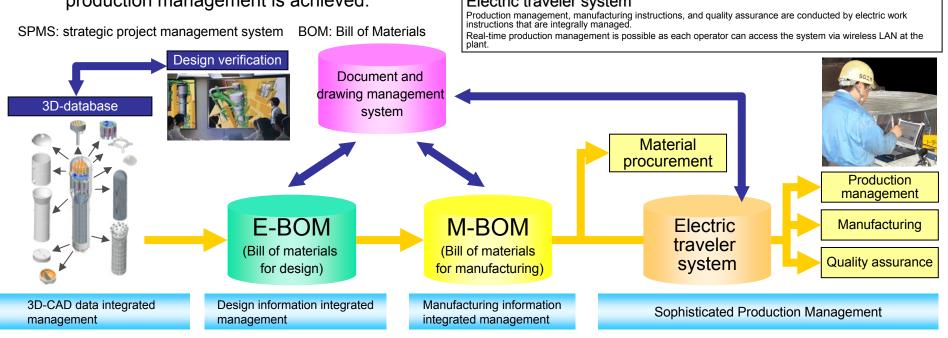
ICT: Information & Communication Technology

- Introducing strategic ICT to the execution of the large-scale FTK project for US-APWR
- Achieving sophisticated project management with the dual management of WBS (cost and schedule control) and CMIS (configuration management)

Comprehensive project management V&V management by CMIS by standard plant WBS Verification of implementation of required specifications Control of EPC execution by each WBS code / quality assurance The content of NRC and customer requirements and Clarifying the division of responsibility within a approval applications to be properly reflected in design consortium documents and plant facilities Flexible and highly precise management of processes Secure reflection of changes in specifications, etc., and and schedules management of change information Detailed management of budget/performance by EVM Use of facility database for customers' operation ■ Example of WBS code management Concept of Verification & Validation process -115-Validation (confirmation) Validation Agreements, specifications (confirmation) Review process Design document Test performance report Verification Test plan document (validation) (CMIS functions) Secure follow-up of a Manufacturing variety of requirements and installation **WBS** and changes

WBS: Work Breakdown Structure (work breakdown chart) CMIS: Configuration Management Information System

EVM: Earned Value Management (a method of qualitatively measuring and analyzing project cost and schedules to manage them in an integrated manner)


NRC: United States Nuclear Regulatory Commission

Production Innovation; Strengthening Manufacturing Capabilities

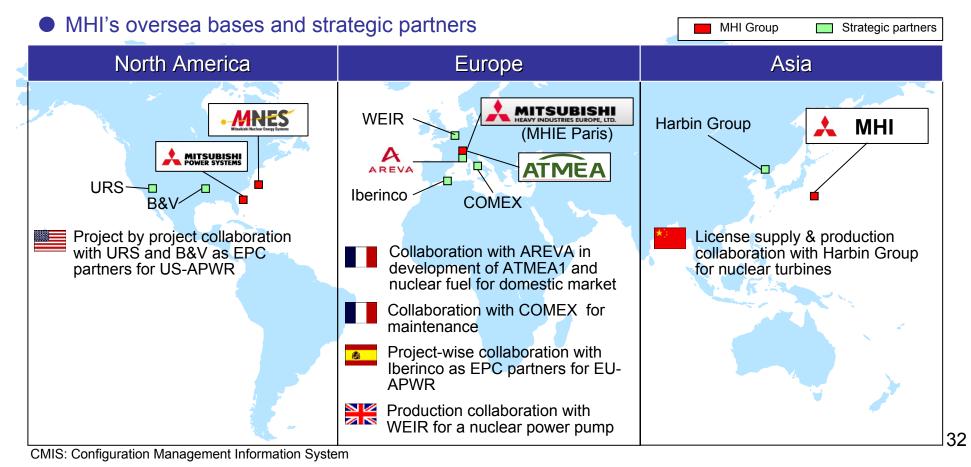
- Achieving highly efficient and high quality manufacturing through SPMS-based design and production innovation
 - 3D data are deployed in the BOM (component chart); information is integrally managed; operation process management is made more efficient.

- Onsite documents are centrally managed by the electric traveler system; a higher level of production management is achieved. Electric traveler system

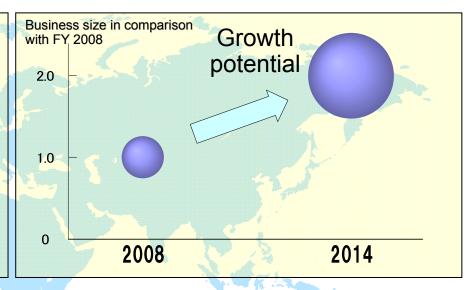
Production system capable of making two plants a year to be launched in 2011

Steam generator plant, Kobe

Nuclear reactor vessel / reactor internal plant, Kobe
(Futami)

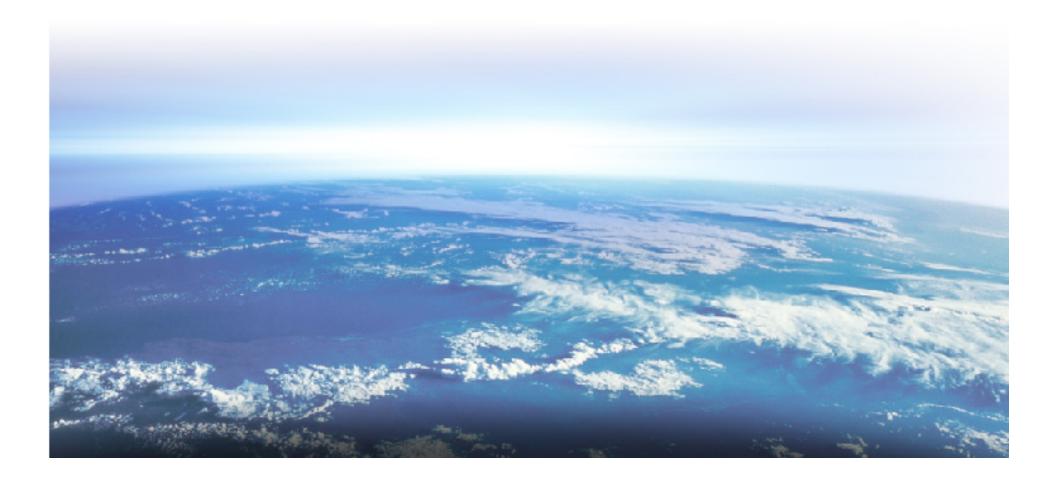

Exclusive nuclear power turbine plant, Takasago

Supply Chain Management; Constructing a Global SCM


- Categorizing suppliers depending on QA requirement of nuclear safety (Using a domestic supply chain, including in-house manufacturing at MHI, for facilities that are critical for safety and performance; others will be procured locally)
- MHI's global network, including MHI's strategic partners, to enquire at suppliers; selection is made after confirming conformity to the Mitsubishi standard and specifications
- Selected products will be managed with CMIS according to local regulations.

Closing

Expanding business size and profit, satisfying the policy of improving global environment in industrialized countries, and demands for infrastructure in developing countries.


* The size of circles represent business size

A Leading Company in the Global Nuclear Energy Field

Sophisticated Production Capabilities
 Contribute to Low-Carbon Society

Our Technologies, Your Tomorrow

