Industry & Infrastructure Domain
Business Plan

Kazuaki KIMURA
Senior Executive Vice President,
President and CEO of Industry & Infrastructure Domain,
and Head of Marketing & Innovation Headquarters

June 12, 2017
Contents

1. Business Overview

2. FY2017 Business Strategy
 2-1. FY2016 Summary & FY2017 Outlook
 2-2. Business Strategy

3. Individual Business Strategies
 3-1. Concentration into Core Competencies
 3-2. Strengthening of Core Businesses
 3-3. Implementation of PMI
 3-4. Structural Reforms in Commercial Ship Business
 3-5. Enhancement of Engineering Synergies

4. Summary
1. Business Overview

2. FY2017 Business Strategy
 2-1. FY2016 Summary & FY2017 Outlook
 2-2. Business Strategy

3. Individual Business Strategies
 3-1. Concentration into Core Competencies
 3-2. Strengthening of Core Businesses
 3-3. Implementation of PMI
 3-4. Structural Reforms in Commercial Ship Business
 3-5. Enhancement of Engineering Synergies

4. Summary
1-1. Overview (Domain Reorganization)

The Industry & Infrastructure domain (I&I domain) was launched as part of a larger Companywide reorganization of domains carried out in April 2017. Chemical Plants, Land Transportation Systems, and Shipbuilding & Ocean Development are being consolidated into the I&I domain to create synergies in engineering and other areas, and also to advance reforms of commercial ship operations.

【Until March 2017】

- Energy & Environment
 - Thermal Power
 - Nuclear Power
 - Renewable Energy
 - Chemical Plants

- Commercial Aviation & Transportation Systems
 - Commercial / Cruise Ships
 - Land Transportation Systems
 - Commercial Aircraft
 - Aero Engines

- Integrated Defense & Space Systems
 - Defense Systems
 - Space Systems

- Machinery, Equipment & Infrastructure
 - Compressors
 - Metals Machinery
 - Turbochargers
 - Engines
 - Machinery & Equipment

- Aircraft, Defense & Space
 - Commercial Aircraft
 - MRJ
 - Defense Systems
 - Space Systems

- Air-Conditioning & Refrigeration
 - Commercial / Cruise Ships
 - Land Transportation Systems

- Chemical Plants

【From April 2017】

- Energy & Environment
 - Thermal Power
 - Compressors
 - Aero Engines
 - Nuclear Power
 - Renewable Energy

- Commercial Aviation & Transportation Systems
 - Industry & Infrastructure
 - Metals Machinery
 - Material Handling Equipment
 - Turbochargers
 - Engines
 - Air-Conditioning & Refrigeration
 - Commercial / Cruise Ships
 - Land Transportation Systems
 - Chemical Plants

- Integrated Defense & Space Systems
 - Defense Systems
 - Space Systems

- Machinery, Equipment & Infrastructure
 - Compressors
 - Metals Machinery
 - Turbochargers
 - Engines
 - Machinery & Equipment

- Aircraft, Defense & Space
 - Commercial Aircraft
 - MRJ
 - Defense Systems
 - Space Systems

- Air-Conditioning & Refrigeration
 - Commercial / Cruise Ships
 - Land Transportation Systems

- Chemical Plants

Business
- Material Handling Equipment
- Engines
- Turbochargers
- Metals Machinery
- Air-Conditioning & Refrigeration
- Aerospace
- Compressors
- Commercial Aircraft
- MRJ
- Defense Systems
- Space Systems

Group company
- Mitsubishi Nichiyu Forklift Co., Ltd.
- UniCarriers Corporation
- Mitsubishi Heavy Industries Engine & Turbocharger, Ltd.
- Primetals Technologies
- Mitsubishi Heavy Industries Thermal Systems, Ltd.
- Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd.
- Mitsubishi Heavy Industries Mechatronics Systems, Ltd.
- Mitsubishi Heavy Industries Machinery Technology Corporation
- Mitsubishi Heavy Industries Printing & Packaging Machinery, Ltd.
- Mitsubishi Heavy Industries Machine Tool Co., Ltd.
- Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd.

Division
- Commercial Ships
- Cruise Ships
- Chemical Plants
- Land Transportation Systems

- Ship & Ocean Division
- Engineering Headquarters, Transportation Systems Division
- Engineering Headquarters
- Engineering Headquarters, Engineering Headers
1-1. Overview (Net Sales by Main Businesses)

- **Material Handling Equipment**
- **Turbochargers**
- **Engines**

M-FET:
- Mitsubishi Heavy Industries Forklift, Engine & Turbocharger Holdings, Ltd.
- Intelligent Transportation System (ITS)

FY2016 net sales

¥1,747.0 billion

- **Industrial & Precision Instruments**
- **Shipbuilding & Ocean Development**
- **Material Handling Equipment**
- **Turbochargers**
- **Engines**
- **Air-conditioning & Refrigeration**
- **Metals Machinery**
- **Air-Conditioning & Refrigeration**
- **Chemical Plants**
- **Ships & Ocean Development**
- **Turbochargers**
- **Chemical Plants**
- **Environmental Systems**
- **Land Transportation Systems**
- **Engine & Precision Instruments**
- **Mechatronics Systems, ITS**

Others

Electronic Road Pricing (ERP) Systems

Large ferries

Commonwealth ferries

Paper Converting Machinery, Box-making machines

Residential air-conditioners

Hot Strip Mills

Polyethylene plant

Waste-to-Energy Plants

Transportation systems

© 2017 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.
1-2. FY2016 Major Projects and Orders Received

Metals Machinery
- Order from the Netherlands for continuous slab caster

Shipbuilding & Ocean Development
- Handover of large-scale cruise ship

ITS
- Orders for electronic toll collection (ETC) systems

Land Transportation Systems
- Orders for automated guideway transit (AGT) systems
1. Business Overview

2. FY2017 Business Strategy
 2-1. FY2016 Summary & FY2017 Outlook
 2-2. Business Strategy

3. Individual Business Strategies
 3-1. Concentration into Core Competencies
 3-2. Strengthening of Core Businesses
 3-3. Implementation of PMI
 3-4. Structural Reforms in Commercial Ship Business
 3-5. Enhancement of Engineering Synergies

4. Summary
2-1. FY2016 Summary & FY2017 Outlook

【FY2016 Summary】

- **Orders received**
 Orders increased largely due to the merger with UniCarriers, but a sluggish global economy and market meant orders for Chemical Plants (which had been robust in FY2015), Commercial Ships and Land Transportation Systems decreased.

- **Net sales**
 In spite of decreased revenue in Metals Machinery, overall net sales expanded due to the merger with UniCarriers, and to scale expansion in Turbochargers and Land Transportation Systems.

- **Operating income**
 Income declined in Metals Machinery, which is undergoing PMI, and in Commercial Ships (LNG carriers).

【FY2017 Outlook】

- **Orders received**
 Orders are projected to grow by ¥300 billion through expansion of our engineering businesses.

- **Net sales**
 Sales are projected to increase ¥100 billion, mainly on scale expansion in Material Handling Equipment, Turbochargers, etc.

- **Operating income**
 Income is projected to increase ¥35 billion from FY2016, to ¥85 billion by increasing sales, accelerating PMI, and structural reforms in the business of Commercial Ships.

PMI: Post Merger Integration
2-2. Business Strategies

1) 2015 Business Plan progress status and future measures

<table>
<thead>
<tr>
<th>Basic policies</th>
<th>Progress status</th>
<th>Future measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reorganize and integrate small/medium scale businesses</td>
<td>Concentration of small/medium businesses into core competencies is proceeding smoothly.</td>
<td>MHI-MS, PPM and MHIMT will be merged to enhance the flow and efficiency of resources (staff, equipment, funds etc.). Resources will be concentrated into anticipated growth areas, and fixed costs will be reduced to strengthen the organization.</td>
</tr>
<tr>
<td>2. Accelerate PMI at merged companies</td>
<td>PMI at PT is on schedule but the market remains sluggish. Business scale has expanded at M-FET after the acquisition of UC.</td>
<td>At PT, recovery in earning capacity will be pursued through accelerated PMI. At M-FET, early PMI merits will be sought by fully integrating MN and UC’s operations.</td>
</tr>
<tr>
<td>3. Expand scale and earnings of core businesses</td>
<td>Turbocharger business scale and earnings are expanding amid market growth.</td>
<td>In addition to the Turbocharger business, efforts will be made to expand business scale and earnings in Air-Conditioning & Refrigeration, ITS and Paper Converting Machinery.</td>
</tr>
<tr>
<td>4. Accelerate structural reforms in the Commercial Ship business</td>
<td>Although delivery of the second ship to AIDA was completed, the LNG ship cost target was not reached and construction work is behind schedule.</td>
<td>Activities will be carried out to reduce costs and shorten construction time, and the business will be strengthened, especially in engineering.</td>
</tr>
<tr>
<td>5. Enhance ability to boost overseas business relating to large projects</td>
<td>Engineering-related businesses – with strong elements of EPC in Chemical Plants, Land Transportation Systems and Environmental Systems – is being consolidated into the I&I domain.</td>
<td>Project management capabilities will be strengthened by focusing resources, and will also be applied to project and risk management of other products in the I&I domain.</td>
</tr>
</tbody>
</table>

2-2. Business Strategies

2) 2015 Business Plan progress status and future measures (schedule)

- **FY2015**
 - 1. Reorganize and integrate small/medium scale businesses
 - 2. Accelerate PMI of already merged companies
 - M-FET
 - PT
 - 3. Expand scale and earnings of core businesses

- **FY2016**
 - MHI-MS, PPM, MHIMT integration
 - Collaboration with other companies

- **FY2017**
 - Industries & Infrastructure Domain
 - Bridges, shield tunneling machines, agricultural machinery, injection molding machines, material handling systems

- **FY2018**
 - P11 (3-1)
 - Transition to new structure
 - Expansion in engineering business
 - LNG carrier cost reduction
 - Collaboration with other companies

- **FY2019~**
 - P18 (3-3)
 - Complex engineering support
 - Stronger synergy merits in engineering areas
 - e.g., Chemical Plants, Land Transportation Systems, Environmental system
 - Expansion of scale and earnings from engineering synergies

Major focuses of 2018 Business Plan

MHI-MS: Mitsubishi Heavy Industries Mechatronics Systems, Ltd
PPM: Mitsubishi Heavy Industries Printing & Packing Machinery, Ltd
MHIMT: Mitsubishi Heavy Industries Machinery Technology Corporation
PT: Primetals Technologies
M-FET: Mitsubishi Heavy Industries Forklift, Engine & Turbocharger Holdings
PMI: Post Merger Integration
1. Business Overview

2. FY2017 Business Strategy
 2-1. FY2016 Summary & FY2017 Outlook
 2-2. Business Strategy

3. Individual Business Strategies
 3-1. Concentration into Core Competencies
 3-2. Strengthening of Core Businesses
 3-3. Implementation of PMI
 3-4. Structural Reforms in Commercial Ship Business
 3-5. Enhancement of Engineering Synergies

4. Summary
3-1. Concentration into Core Competencies

Focus areas for core competencies in machinery, equipment & infrastructure business
- Core businesses: Globalization, PMI acceleration
- Small/medium scale businesses: Pursue enhanced flow and efficiency of staff/equipment/funds through consolidation
- Downsizing/withdrawal businesses: Development through collaboration with other companies

Circle size indicates business scale
New initiatives are shown in red

PT: Primetals Technologies, M-FET: Mitsubishi Heavy Industries Forklift, Engine & Turbocharger Holdings, Ltd., MHIET: Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. MTH: Mitsubishi Heavy Industries Thermal Systems Co., Ltd., MCCJ: Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd., MHIEC: Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd., MAT: Mitsubishi Heavy Industries Machine Tool Co., Ltd., PPM: Mitsubishi Heavy Industries Printing & Packing Machinery, Ltd., MHIMT: Mitsubishi Heavy Industries Machinery Technology Corporation, MHI-MS: Mitsubishi Heavy Industries Mechatronics Systems, Ltd, ITS: Intelligent Transportation System
3-2. Strengthening of Core Businesses

Business environment

◆ Worldwide enhancement of environmental regulations (exhaust emissions)
◆ Expanding demand through 2025 for turbochargers (on rising adoption of turbochargers) amid trend toward engine down-sizing and lower fuel consumption
◆ With further tightening of regulations, increasing shift to electrified vehicles (after 2025)
 ・Rising demand for electric vehicles (EV)
 ・Increasing adoption of hybrid and plug-in vehicles
 ・Rising ratio of the adoption of turbochargers in engine-powered vehicles

※Global trend in turbocharger market (up to 3.5ton)

Key management policies

◆ Develop and launch products in response to market changes
◆ In FY2017, complete global production system for 11 million units
◆ Sustain growth on expansion of global developments

Business strategies

1) Response to market changes (diversification of power trains)
 All automakers are boosting their average fuel efficiency through a product mix of EV, HV/PHV and engine-powered models.
 • Reduce fuel consumption in engine-powered vehicles
 Development of gasoline VG (variable geometry) turbochargers※1 and Electric 2-stage Turbocharging System
 • Response to electrified vehicles
 Development of HV-dedicated turbochargers
 Introduction of turbochargers for series hybrids※2

※1 Variable geometry turbocharger for gasoline engines
※2 Hybrid system in which engine produces electricity that drives the motor

2) Strengthen global structure
 • Launch new production lines at Sagamihara and China bases
 • Establish global quality control system
 • Expand procurement in low-cost countries
 • Enhance technology response capability by overseas bases

Global production system (11 million units)
3-2. Strengthening of Core Businesses

Business environment

Global demand for air-conditioning and refrigeration systems is expected to continue expanding in the mid-long term along with environmental protection moves (energy conservation, CO2 emission cuts), etc.

Market share, others.
- Hold top share in domestic market for refrigeration systems
- Possess world-class energy/environmental technologies
- Offer world’s foremost product lineup (centrifugal chillers, commercial/residential air-conditioning systems, high-temperature heat pumps, natural catalyst freezers, electric refrigeration units for transportation)

Key management policies

Expand market scale along with market growth
Grow thermal solutions business through various product lineups and energy/environment technologies
Grow global businesses and servicing business, and enhance management efficiency

Business strategies

1) Expand thermal solutions business (grow business in refrigeration / high-temperature heat pumps)
 - Launch new high-performance, low-GWP * refrigerants responding to new refrigerant regulations (air-conditioners, centrifugal chillers and air/water to water heat pumps)
 - Propose heat pumps as a replacement for boilers used in plant processes (drying, washing, sterilization, etc.)
 - Reinforce marketing in Europe, China and Asia (new products, servicing)

2) Expand and reinforce global businesses and servicing business
 - Expand sales of Air Flex, providing outstanding comfort, through reinforcement of production system at production base in Thailand
 - Reinforce global marketing of Centrifugal Chillers (especially China, Southeast Asia, Middle East)
 - Enhance in-house service network for Centrifugal Chillers (Thailand, Singapore, Malaysia, etc.)

*GWP: Global Warming Potential
The global market is in an expansionary trend, especially in Asia, North America and Europe. The domestic market is flat. The scale of the ITS market as a whole is approx. ¥2 trillion. The market MHI serves is approx. 10% of the total.

◆ Domestic market
Business is evolving mainly in toll collection systems such as ETC (Electronic Toll Collection Systems), etc.
• Stable demand for both renewal and new systems is emerging.

◆ Overseas market
Business is under expansion, mostly ERP (Electronic Road Pricing systems).
• Singapore: ERP is transitioning to next-generation systems, creating related business opportunities.
• Southeast Asia, etc.: Road networks are progressing along with economic growth. ITS-related infrastructure is in an expansionary trend centered on collection systems.

Key management policies
• Sustain earning capacity based on domestic and Singaporean markets.
• Expand the target market leveraging completion of the next-generation ERP in Singapore, and develop new business.
• Build a third pillar of business in Asia.

ITS: Intelligent Transportation System, ETC: Electronic Toll Collection System

Business strategies
◆ Domestic market
• Stimulate demand through new models of both toll collection systems and ETC.
• Launch new systems through technology development and advance response to needs relating to collection measures, etc.

◆ Overseas market
• Singapore: Accomplish the next-generation ERP on order, and develop new business based on the new ERP platform.
• South east Asia, etc.: Forge a business model through project formation based on system proposals responding to the specific needs of each countries.

Automated toll collection machine (Japan)

Electronic Road Pricing system (ERP) (Singapore)

ETC system (Japan)

ETC system demonstration testing (Malaysia)
Along with increasing population, economic growth and growth of e-commerce, demand for corrugated cardboard as a “hidden infrastructure” supporting logistics is in a global expansionary trend.

Key management policies

Use the global increase in demand for recyclable packaging materials as a business opportunity. Enhance product appeal and cost competitiveness to expand business scale and earnings

- Japan: firmly sustain top share (above 50%)
- World: aim for No.2 global share (currently No.3)

Business strategies

1) **Expand global customer base (currently 23 countries)**

 - Ratios of orders for box-making machines, by region
 - FY2011: Japan 43%, America 47%, China 56.3%
 - FY2016: Japan 31%, America 29%, China 76.1%

2) **Global network of servicing business**

 - Utilize resources of MHI Group (parts depots, service personnel, etc.)
 - Expand rebuilding business for high-operating machinery installed overseas
 - Enhance quality of services and higher efficiency through active use of QRM

3) **Launch strategic products in growth markets**

 - Box-making machine: Flexo Folder Gluer EVOL
 - Box-making machine (concept) for middle-range market

Notes

- QRM: Quick Response Manufacturing
- * based on core EVOL orders
- (as of end-FY2016)

(Source: Freedonia Custom Research Inc.)
Chemical Plants

Business environment

◆ Market trends
 • Gas prices falling due to increased shale gas production
 • Added value from natural gas
 • Expanding business opportunities in fertilizer, methanol and petrochemical plants (North America, Russia, Central Asia, Sub-Saharan Africa, etc.)

Key management policies

◆ Secure business continuity in global competition; Create new business model
 (New portfolio, business investments, after-services)

◆ Higher efficiency of personnel resources
 (Project IT, collaboration with partners etc.)

Business strategies

1) New business models
 • Stabilize profitability through execution of on-going projects, and increase opportunities for investments and business partnership
 • Further participate in operation and maintenance through project investments
 • Enhance technological strength and expand after-services business applying knowledge gained through business participation

2) Expansion of CO2-EOR business
 • Completed large-scale CO2 recovery plant with the world’s largest processing capacity (2016, USA)
 • Further strengthen technologies and cost reduction in preparation for higher oil prices

3) Sales activities focused on strategic regions
 • Consecutive orders received from Turkmenistan and Uzbekistan (5 plants ordered from Russia and Central Asia since 2010)
 • Expand sales activity in North America, Russia, Central Asia and sub-Saharan Africa

CO2 recovery plant (USA) Fertilizer plant (Tatarstan, Russia)

EOR: Enhanced Oil Recovery
3-2. Strengthening of Core Businesses

Land Transportation Systems

Business environment

◆ Market trends:

 • Despite decline in projects involving yen loans (Southeast Asia) and resource exporting countries (Middle East), self-financed projects are progressing relatively smoothly.

 • Amid growing air passenger numbers, airport expansion plans are robust, generating demand for new, extended or updated airport APMs.

Key management policies

◆ Develop total solutions business in urban transport based on our strength in system integration and AGT systems

◆ Establish business foundation as a transportation system integrator with dual strengths in engineering and manufacturing

APM: Automated People Mover
AGT: Automated Guideway Transit

Business strategies

1) Target for large-scale urban transport projects

 • Engage primarily in promising EPC business negotiations mainly in the Middle East and Southeast Asia

 • Enhance project execution capability sharing track record in previously executed construction work

 • Strengthen relationships with partners suitable for each project

2) Develop AGT business

 • Increase the share of overseas airport APM projects

 • Expand marketing of urban AGTs (FY2016: order received for Yurikamome carriage replacements)

 • Enhance the product lineup with completion of a high-speed AGT (120km/h)

3) O&M business initiatives

 • Make active use of O&M expertise cultivated at overseas Group companies, etc.

 • Acquire O&M business targeted at already ordered or planned projects

 • Promote use of the MIHARA Test Center

Macao LRT
Thailand Red Line

EPC: Engineering, Procurement, Construction
O&M: Operation & Maintenance

© 2017 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.
3-3. Implementation of PMI (Metals Machinery)

Orders received now in a gradual recovery trend

PT orders received, by quarter (€ millions)

- 1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q

FY2015 FY2016

Worldwide manufacturing capacity surplus continues

Promote PMI to enable profit even at €1.5 bn. scale

[EBITDA improvement target]

(FY2016→2019) +€85m

PMI (business integration process)

- Consolidate organization (completed)
 Business segments: 10 → 7
 Organizational functions: 26 → 9
- Optimize work force scale (8,000 → 7,100)
- Eliminate redundant R&D costs (completed)

Further PMI and implementation of growth strategy

- Consolidate overseas locations (Approx.40 → 26)
- Expand market share through implementation of growth strategy
 → Improved utilization of key technologies
 → Reform of business model
 → Expansion of alliance

Sustained growth

Achieve top global position and stabilization of earnings

Completion of PMI

Orders received

- FY2015: €1.5B
- FY2016: €1.6B
- FY2017: €1.7~1.8B
- FY2018: Over €1.9B

PMI: Post Merger Integration
EBITDA: Earning Before Interest, Taxes, Depreciation and Amortization
1) Strengthen organization through consolidation of overseas bases (approx. 40 → 26)

1. Streamline redundant facilities of former Mitsubishi Hitachi Metals Machinery and Siemens VAI
2. Reorganize facilities in line with each market.
3. Optimize manufacturing facilities

<table>
<thead>
<tr>
<th>Europe</th>
<th>Asia</th>
<th>Others</th>
<th>North America</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>13</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

- Before consolidation: 40
- After consolidation: 26

2) Strengthen price competitiveness and earning capacity through optimization of design, procurement and manufacturing processes

1. Market analysis reflecting customer demand and prices/technologies of competing companies
2. Establish market-leading target prices and costs
3. Review design concept matching target costs
 - Weight and parts reductions, simplification
 - Design standardization and modularization
 - Changes in materials and parts
4. Establish procurement and manufacturing cost model to achieve target costs
 - Enhance supply chain management
 - Design with full consideration of manufacturing processes
 - Improve productivity, shorten construction periods
5. Establish product cost model and enhance further cost reductions
3-3. Implementation of PMI (Metals Machinery)

3) Share expansion through implementation of growth strategies reflecting technology trends and customer needs

<table>
<thead>
<tr>
<th>Technology trends</th>
<th>Core areas of implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. High-quality, low-cost production</td>
<td>Production of high-tensile, deep-drawing steel sheets</td>
</tr>
<tr>
<td>Endless Strip Production (ESP)</td>
<td>Endless Strip Production Line</td>
</tr>
<tr>
<td>45% reduced energy</td>
<td>• Reduction of initial costs through compact design</td>
</tr>
<tr>
<td>98% yield from liquid steel to coil</td>
<td>• Reduced production costs through achievement of continuous casting and rolling</td>
</tr>
<tr>
<td>7 min process lead time</td>
<td>Through Process Optimization</td>
</tr>
<tr>
<td>0.8 mm ultra-thin hot band</td>
<td>• Higher yields of steel sheet quality achieved through prediction model</td>
</tr>
<tr>
<td>6 references 18 Mt produced</td>
<td>2. Manpower savings, smart production</td>
</tr>
<tr>
<td>Revolutionizing the production of hot rolled band</td>
<td>Industrie 4.0, IoT</td>
</tr>
<tr>
<td></td>
<td>Condition Monitoring System</td>
</tr>
<tr>
<td></td>
<td>• More efficient machine maintenance using mobile tools</td>
</tr>
<tr>
<td></td>
<td>• Avoidance of operating glitches through introduction of predictive maintenance (dangerous work robot)</td>
</tr>
<tr>
<td></td>
<td>LiquiRobo (dangerous work robot)</td>
</tr>
<tr>
<td></td>
<td>• Unmanned performance of molten steel handling</td>
</tr>
<tr>
<td>3. Energy savings, production with low environmental impact</td>
<td>Iron sources diversification process</td>
</tr>
<tr>
<td>MIDREX</td>
<td>MIDREX (directly reduced iron)</td>
</tr>
<tr>
<td></td>
<td>• Reduction of CO2 through processing without coal (use of natural gas)</td>
</tr>
<tr>
<td>Quantum EAF</td>
<td>CO Gas Fermentation (bioethanol production)</td>
</tr>
<tr>
<td></td>
<td>• Higher added value of blast furnace and converter furnace gas</td>
</tr>
<tr>
<td></td>
<td>Quantum EAF (new type of electric furnace)</td>
</tr>
<tr>
<td></td>
<td>• Melting at low power through waste heat recovery</td>
</tr>
</tbody>
</table>
3-3. Implementation of PMI (M-FET)

Current PMI plan is underway and ahead of schedule

Defensive PMI acceleration (through MN and UC merger)

Approach
- Integration and elimination of redundant functions and sites
- Reinforcement of procurement and factory productivity enhancement

Outcome
- Reduction of fixed costs \(\Delta 10\%\)
- Operating income margin improvement 4 \(\rightarrow\) 8%

Apply lessons learned from PMI programs at MHPS and PT

Aggressive Shift from single product to solutions business

Approach
- Next-generation forklift trucks
- AGV (Automated Guided Vehicles), logistics robots
- V2G (Vehicle to Grid) etc.

Outcome
- Sales expansion: 400 billion \(\rightarrow\) Over ¥500 billion

MN: Mitsubishi Nichiyu Forklift Co., Ltd.
UC: UniCarriers Corporation
MHPS: Mitsubishi Hitachi Power Systems, Ltd.
PT: Primetals Technologies
PMI: Post Merger Integration
3-3. Implementation of PMI (M-FET) - Market

1. Forklift truck market

- Global market as a whole is solid (Europe is robust, China is recovering)
- Mature economies are shifting to electric trucks.
- In emerging economies, growth is sustained, centering on engine trucks.

Forklift truck global sales volume (unit: 1,000 vehicles)

- Mature economy
 - 2014: 1,063
 - 2015: 1,064
 - 2016: 1,153
 - 2017: 1,34
 - 2020: 1.67

- Emerging economy
 - 2014: 1,063
 - 2015: 1,064
 - 2016: 1,153
 - 2017: 2.05
 - 2020: 2.50

Authority: World Industrial Trucks Statistics (WITS)

2. Electronic commerce market

Worldwide, electronic (e-) commerce is expanding dramatically. In line with this, optimization needs at logistics workplaces are increasing.

Logistics solutions market is expanding rapidly. (unmanned operation, automation, energy savings, higher safety, etc.)

Scale of global B-to-C e-commerce market (unit: trillion USD)

【Country breakdown (2015)】

- China, 48%
- US, 24%
- UK, 7%
- Japan, 6%
- Others, 15%

- 2014: 1.34
- 2015: 1.67
- 2016: 2.05
- 2017: 2.50
- 2018: 3.02
- 2019: 3.58
- 2020: 4.10

© 2017 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.
3-3. Implementation of PMI (M-FET) - Progress Status

1. Optimization of production bases

- America: 2
- Europe: 3
- Japan: 3
- China: 3
- Asia: 1

- Optimization through function separation and consolidation of redundant functions

2. Cost reforms through procurement system reinforcement

- Achievement and strengthening of procurement system through integration / Separation of models / Cost reforms achieved through market launch of products developed after merger

3. Reinforcement of global development structure

- Starting from development structure, accelerating globally unified operation and implementing multi-brand/global strategies
3-3. Implementation of PMI (M-FET) - Growth Areas

1. Respond to unmanned operation and manpower saving needs

 - WMS: Warehouse Management System
 - AGV: Automated Guided Vehicle
 - AGF: Automated Guided Forklift

 ※WMS: Warehouse Management System
 AGV: Automated Guided Vehicle
 AGF: Automated Guided Forklift

2. Initiatives toward higher efficiency, and safety/security needs

 - Vehicle management system using telematics
 - Proposal of newest safety measures

 Forklift trucks managed by vehicle management system

 Laser-guided AGF for Japanese market “Platter Auto”

 Automated warehouse “Caspack”
Business Structural Reforms Timetable

<table>
<thead>
<tr>
<th>FY2016</th>
<th>FY2017</th>
<th>FY2018 and beyond</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>April (handover completed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Internal organizational reforms

Preparation for organizational reforms

Corporate culture reform activities

Collaboration with other companies

Tie-up discussions
3-4. Structural Reforms in Commercial Ship Business
– Transition to New Structure

Market Environment

Owing to high volume of new ship completions, hull supply gap is significant; severity in industrial carriers continues.

- Gas carriers
 Despite delays in LNG development projects amid falling oil prices, projects in East Africa and Canada’s west coast, together with replacement demand for existing ships.

- Govt. ships
 Some demand, especially for patrol ships.

- ROPAX (ferries)
 Replacement demand exists both in Japan and overseas. In Europe especially, there are some 150 ships older than 20 years.

- Ship & ocean engineering
 Demand exists to respond to energy saving and tightening of environmental regulations e.g. exhaust gas in tandem with SOx regulations applying to all global waters starting in 2020.

Transition to New Structure

As the 1st phase in the transition to a new structure, reorganization will be implemented in July 2017.

→ Clarification of structure of responsibility for business execution functions

1) Reinforcement of core engineering business through consolidation of following functions at Yokohama Bldg. and ties with Engineering Headquarters
 - Business integration
 - Unified integration of engineering resources
 - Project management
 - Implementation of cost reductions through procurement reforms

2) 2nd phase is under consideration.

MHI Ship & Ocean Business Structure (as of July 1, 2017)

Ropax: Roll-on/Roll-off Passenger Ship/Ferry
3-4. Structural Reforms in Commercial Ship Business
- Initiatives for Ships Primarily Involving Outfitting Work

Applying the experience in complex ship engineering acquired through cruise ship construction, response capability will be strengthened and differentiated in ROPAX, small/medium cruise ships, and special purpose vessels. Step by step, response will be made for extremely high-density outfitted ships.

Through engineering synergies, strengthening of design, procurement and construction capabilities Toward becoming Japan’s No.1 ship outfitting technology group

Unification of design resources in Nagasaki and Shimonoseki
Formation of process management system covering all aspects from initial design through construction
Strengthening of collaboration and tie-ups with domestic partners and European suppliers

Hull technology capability (multilayer thin-plate structure)
Experience in construction of large-scale cruise ships for overseas customers

Outfitting technology capability
Abundant construction experience in domestic ferries

Advanced EPC management methods

Nagasaki
Shimonoseki
Integration

High-density outfitted ships
High-density outfitted ships

General cargo carriers (ships primarily requiring hull technologies)

Passenger-oriented ships

Cargo-oriented vessels

Ships Requiring ultra-high-density outfitting (ships primarily requiring outfitting technologies)

ROPAX

Outfitting density

Low
High

Ropax : Roll-on/Roll-off Passenger Ship/Ferry
3-4. Structural Reforms in Commercial Ship Business
- Expansion of Ship & Ocean Engineering Business

- Expansion of business scope leveraging the Company’s strengths in ship & ocean engineering
 → Promotion of alliances with other companies
- Initiatives in new fields through cooperation with other domains

Hull form development engineering

Leveraging ability to develop ship types, provision of energy-saving type ships responding to greenhouse gas regulations

Floating LNG thermal power plants

Needs exist in Southeast Asia, etc. because of ability to minimize land facilities and change their location.

Provision of total solutions in LNG thermal power plants by integrating shipbuilding & marine technologies with plant engineering, etc.

SOx scrubber system

From 2020, regulations on SOx discharge will be strengthened for all global waters. (adopted by International Maritime Organization [IMO])

Development and supply of scrubber systems that remove SOx from exhaust gas, as a substitute for use of low-sulfur fuels
LNG carrier construction is adversely affected by cost deterioration and delayed work schedules caused by late receipt of materials, etc. Improvement measures are being implemented, incorporating the perspective of the shared technology framework.

<table>
<thead>
<tr>
<th>Issues</th>
<th>Measures</th>
</tr>
</thead>
</table>
| Shorter engine-related lead time | • Rearrangement of medium-term plans for production areas and work schedules according to equipment deliveries; shorter work periods by reviewing staff
 | • Streamlining of manufacturing processes through fine segmentation of work processes and application to project management |
| Shorter tank-related lead time | • Improvement and reinforcement of existing facilities, enhancement of production capacity through input of technicians
 | • Analysis of work processes, including partner companies. Standardization of shortest work processes; carried out and unified at all companies. |
| Shorter dock-related lead time | • Improvement of relations through work process analysis
 | • Reinforcement by bringing in internal and external staff to processes experiencing bottlenecks |
3-5. Enhancement of Engineering Synergies

3 Strategies

1. Enhance project management capabilities, as core competence of engineering business, and control QCD (Quality, Cost, Delivery)

2. Apply project management capabilities of engineering business to new/development/pilot projects of other businesses and interdivisional projects

3. Accelerate digitalization for product competitiveness with core technologies of control and communication, and expand business fields

<table>
<thead>
<tr>
<th>EPC</th>
<th>Integral products</th>
<th>Medium-volume modular products</th>
<th>High-volume modular products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Project scale</td>
<td>Chemical Plants</td>
<td>Metals Machinery</td>
<td>Automotive Thermal Systems</td>
</tr>
<tr>
<td>Land Transportation Systems</td>
<td>Environmental Systems</td>
<td>Cruise Ships (small/medium scale)</td>
<td>Engines</td>
</tr>
<tr>
<td>Environmental Systems</td>
<td>Metals Machinery</td>
<td>Commercial Ships</td>
<td>Engines</td>
</tr>
<tr>
<td>1) QCD control in engineering businesses</td>
<td>Metals Machinery</td>
<td>Next-generation ERP</td>
<td>Automotive Thermal Systems</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>ITS</td>
<td>Engines</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>Material Handling Equipment</td>
<td>Engines</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>Air-Conditioning & Refrigeration</td>
<td>Engines</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>Power generation Systems</td>
<td>Engines</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>Air-conditioning & refrigeration systems/plant</td>
<td>Engines</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>Automated warehouses</td>
<td>Engines</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>Cruise Ships (small/medium scale)</td>
<td>Engines</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>Next-generation ERP</td>
<td>ITS</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>ITS</td>
<td>ITS</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>Material Handling Equipment</td>
<td>ITS</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>Air-Conditioning & Refrigeration</td>
<td>ITS</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>Power generation Systems</td>
<td>ITS</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>Automotive Thermal Systems</td>
<td>ITS</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>Engines</td>
<td>ITS</td>
</tr>
<tr>
<td></td>
<td>Metals Machinery</td>
<td>Turbochargers</td>
<td>ITS</td>
</tr>
<tr>
<td>2) QCD control in new/development/pilot projects of other businesses and interdivisional projects</td>
<td>Metals Machinery</td>
<td>Automotive Thermal Systems</td>
<td>ITS</td>
</tr>
<tr>
<td>3) Acceleration of digitalization</td>
<td>Metals Machinery</td>
<td>Automotive Thermal Systems</td>
<td>ITS</td>
</tr>
</tbody>
</table>
3-5. Enhancement of Engineering Synergies – QCD control

October 2016: Report of Cruise Ship Business Evaluation Committee

<table>
<thead>
<tr>
<th>Organization behavior</th>
<th>Insufficient policies and essentials for project implementation</th>
<th>Insufficient QCD control capabilities</th>
<th>Insufficient monitoring of cost and schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>not asking for other divisions’ support</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

March 2017: Formulation of “Companywide Project Implementation Essentials”

<table>
<thead>
<tr>
<th>Knowledge sharing of project management for Engineering Headquarters</th>
<th>Support of project implementation by Engineering Headquarters</th>
</tr>
</thead>
</table>

FY2017 measures

<table>
<thead>
<tr>
<th>Project administration</th>
<th>Project organization</th>
<th>IT systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deployment of project management methods</td>
<td>Support for establishment of matrix type organization for projects</td>
<td>Visualization of project status</td>
</tr>
</tbody>
</table>

QCD risk control and secure project implementation

<table>
<thead>
<tr>
<th>Engineering businesses</th>
<th>Commercial Ships</th>
<th>New/Development/ Pilot projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Transportation Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interdivisional projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals Machinery</td>
</tr>
<tr>
<td>Air-Conditioning & Refrigeration</td>
</tr>
<tr>
<td>Material Handling Equipment</td>
</tr>
<tr>
<td>Mechatronics Systems, Industrial & Precision Instruments</td>
</tr>
<tr>
<td>Engines</td>
</tr>
</tbody>
</table>

- Insufficient monitoring of cost and schedule
- Insufficient QCD control capabilities
- Insufficient project implementation policies and essentials
- Organization behavior not asking for other divisions’ support
- Insufficient knowledge sharing for Engineering Headquarters
- Insufficient visualization of project status
3-5. Enhancement of Engineering Synergies – Digitalization

<table>
<thead>
<tr>
<th>MHI technologies</th>
<th>Cutting-edge technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmanned transport technologies</td>
<td>Automated vehicle technologies</td>
</tr>
<tr>
<td>Land Transportation Systems (APM-AGT)</td>
<td>Material Handling Equipment (Automated Guided Forklift, automated warehouses)</td>
</tr>
<tr>
<td>Control technologies</td>
<td>Wireless communication-applied technologies</td>
</tr>
<tr>
<td>Primetals Technologies Erlangen (PTEA)</td>
<td>ITS (ETC-ERP)</td>
</tr>
</tbody>
</table>

Acceleration of digitalization

<table>
<thead>
<tr>
<th>Next generation product/system development</th>
<th>IoT platforms/application development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban mobility systems</td>
<td>Logistics solutions</td>
</tr>
</tbody>
</table>
1. Business Overview

2. FY2017 Business Policies and Strategy
 2-1. FY2016 Summary & FY2017 Outlook
 2-2. Business Strategy

3. Individual Business Strategies
 3-1. Concentration into Core Competencies
 3-2. Strengthening of Core Businesses
 3-3. Implementation of PMI
 3-4. Structural Reforms in Commercial Ship Business
 3-5. Enhancement of Engineering Synergies

4. Summary
4. Summary

1) Achieving Targets
Implement all measures to achieve FY2017 targets (net sales: ¥1.85 trillion / operating income: ¥85 and target further expansion of both sales and income.

2) Securing Profitability
1) Complete all restructuring and integration activities small/medium scale businesses within this fiscal year
2) Pursue highly profitable structure through accelerated and anticipated implementation of PMI at Primetals and M-FET
3) Strengthen earning capacity in Commercial Ships implementing various measures for LNG Carriers
4) Increase operation income reinforcing project management and risk management through consolidation of engineering businesses

3) Business Expansion and Growth
1 Sustain growth in core businesses
2 Expansion through resource management in engineering businesses
3 Create and develop new businesses fields through engineering synergies
MOVE THE WORLD FORWARD