MHI Gas Turbine Business Presentation

GTCC Business Report and Strategic Goals

September 12, 2005
Mitsubishi Heavy Industries, Ltd.
Ichiro Fukue
Executive Vice President & Representative Director General Manager, Power Systems Headquarters
Positioning of the Power Systems Segment
Power Systems Share of Total Orders and Sales

FY04 Consolidated Orders Received

¥691.4billion
Total: ¥2,722.8 billion

FY04 Consolidated Net Sales

¥629.6billion
Total: ¥2,590.7 billion
Power Systems Consolidated Orders Received, Net Sales, Operating Income and R&D Expenditures

(\text{billion yen})
Major Products of the Power Systems Segment

Power Systems

Thermal power plant (GTCC/conventional)
- Steam turbines, Gas turbines, Boilers
- Selective Catalytic NO\textsubscript{x} Removal System

Renewable energy
- Wind, Hydro, Geothermal, Solar power plant

Diesel engines Marine engines Fuel cells

Nuclear Power

- PWR Power Plants
- New boiler plant type power plant
- Nuclear fuel
- Nuclear Fuel Cycle Equipments

Composition of FY04 Orders
Received (Power Systems)
The Gas Turbine Business
Global Orders for Gas Turbines by Category

Average Market Share Over Past Three Years (2002-2004)

[Target] Market Share of 20%

- Due to surge in U.S. demand
- Due to surge in Chinese demand

Order volumes (MW)

- Large
- Medium
- Small

Each bar represents a different category (Large, Medium, Small), and the bars are color-coded to indicate market share for each category.
Gas Turbine Deliveries by Region

As of June 2005

Europe and Middle East
- Netherlands 1
- Slovakia 2
- Iran 11
- Kuwait 4
- Qatar 6
- Algeria 6
- Egypt 2
- Saudi Arabia 26
- U.A.E. 6
- Pakistan 1
- U.K. 13
- Ireland 1
- Spain 7

Americas
- Brazil 2
- Peru 3
- Chile 2
- Argentina 5

Southeast Asia
- Thailand 18
- Singapore 4
- Indonesia 21
- Vietnam 3
- Malaysia 3
- China 16
- India 10
- Macao 3
- Mozambique 1

Japan
- Japan 150
- Hong Kong 7
- Taiwan 22
- Philippines 7

Total

- **M501G** 29
- **M701G** 7
- **Total**: 36 units

- **M501F** 61
- **M701F** 69
- **Total**: 130 units

- **M501D** 17
- **M701D** 79
- **Total**: 96 units

- **TOTAL**: 450 units
continuously received several orders for large combined-cycle projects

<table>
<thead>
<tr>
<th>Customer</th>
<th>Project</th>
<th>Turbines</th>
<th>Output</th>
<th>Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tohoku Electric Power</td>
<td>Higashi-Niigata 4-2</td>
<td>M701G 2</td>
<td>805MW</td>
<td>2008</td>
</tr>
<tr>
<td>Tokyo Electric Power</td>
<td>Kawasaki No. 1</td>
<td>M701G2 3</td>
<td>1,500MW</td>
<td>2007</td>
</tr>
<tr>
<td>Kawasaki Natural Gas Generation</td>
<td>Kawasaki Natural Gas</td>
<td>M701F 2</td>
<td>800MW</td>
<td>2008</td>
</tr>
</tbody>
</table>
Captured large volume of orders through bulk-negotiations

The sole provider in China of CC generators fueled by blast furnace exhaust gas

<table>
<thead>
<tr>
<th>Project</th>
<th>Turbine</th>
<th>Output</th>
<th>Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beijing No. 3</td>
<td>M701F</td>
<td>272MW</td>
<td>2005</td>
</tr>
<tr>
<td>Shenzhen Qianwan</td>
<td>M701F</td>
<td>735MW</td>
<td>2006~7</td>
</tr>
<tr>
<td>Huizhou LNG</td>
<td>M701F</td>
<td>735MW</td>
<td>2006~7</td>
</tr>
<tr>
<td>Shenzhen Eastern</td>
<td>M701F</td>
<td>735MW</td>
<td>2006~7</td>
</tr>
<tr>
<td>Jiangsu Shagang</td>
<td>M251S</td>
<td>60MW</td>
<td>2005~6</td>
</tr>
<tr>
<td>Handan</td>
<td>M251S</td>
<td>60MW</td>
<td>2006</td>
</tr>
<tr>
<td>Anshan</td>
<td>M701F</td>
<td>300MW</td>
<td>2007</td>
</tr>
<tr>
<td>Maanshan</td>
<td>M701DA</td>
<td>153MW</td>
<td>2007</td>
</tr>
</tbody>
</table>

Total orders: 16 turbines
(as of September 1, 2005)
Southeast Asia

About 14 GW orders are expected over the next five years

<table>
<thead>
<tr>
<th>Country</th>
<th>Customer</th>
<th>Project</th>
<th>Turbine</th>
<th>Output</th>
<th>Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taiwan</td>
<td>TPC</td>
<td>Dah-tarn</td>
<td>M501F x 6, M501G x 8</td>
<td>4,272MW</td>
<td>2005-2008</td>
</tr>
<tr>
<td>Korea</td>
<td>KDHC</td>
<td>Hwaseong</td>
<td>M501F x 2</td>
<td>800MW</td>
<td>2007</td>
</tr>
<tr>
<td>Korea</td>
<td>POSCO</td>
<td>Pohang</td>
<td>M501DA x 1</td>
<td>145MW</td>
<td>2007</td>
</tr>
<tr>
<td>Thailand</td>
<td>RPC</td>
<td>Ratchaburi</td>
<td>M701F x 4</td>
<td>1,400MW</td>
<td>2008</td>
</tr>
<tr>
<td>Indonesia</td>
<td>PLN</td>
<td>Cilegon</td>
<td>M701F x 2</td>
<td>700MW</td>
<td>2005</td>
</tr>
</tbody>
</table>

Deliveries by country:
- Taiwan: 22
- Korea: 3
- Vietnam: 3
- Malaysia: 3
- Singapore: 4
- Thailand: 18
- Indonesia: 21

Southeast Asia

Southeast Asia

Southeast Asia
Enhanced presence in this region by expanding the function of the existing local base

Prepared for a recovery in demand in North America

<table>
<thead>
<tr>
<th>Country</th>
<th>Customer</th>
<th>Project</th>
<th>Turbine</th>
<th>Output</th>
<th>Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>Portland GE</td>
<td>Port Westward</td>
<td>M501G 1</td>
<td>400MW</td>
<td>2007</td>
</tr>
<tr>
<td>Mexico</td>
<td>Mitsubishi Corp.</td>
<td>Tuxpan V</td>
<td>M501F 2</td>
<td>495MW</td>
<td>2006</td>
</tr>
<tr>
<td>Chile</td>
<td>ENDESA</td>
<td>San Isidro</td>
<td>M701F 1</td>
<td>377MW</td>
<td>2008</td>
</tr>
</tbody>
</table>
Enhanced presence in this region by establishing more local bases

<table>
<thead>
<tr>
<th>Country</th>
<th>Customer</th>
<th>Project</th>
<th>Turbine</th>
<th>Output</th>
<th>Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
<td>Electrabel</td>
<td>Castelnou</td>
<td>M701F □2</td>
<td>800MW</td>
<td>2006</td>
</tr>
<tr>
<td>Spain</td>
<td>AES</td>
<td>Cartagena</td>
<td>M701F □3</td>
<td>1,200MW</td>
<td>2006</td>
</tr>
<tr>
<td>Spain</td>
<td>ENDESA</td>
<td>Cristobal Colon</td>
<td>M701F □1</td>
<td>400MW</td>
<td>2006</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>ARAMCO</td>
<td>Berri</td>
<td>M501F □2</td>
<td>300MW</td>
<td>2005</td>
</tr>
</tbody>
</table>
Strategies for Gas Turbine Business

- Business model
 - Increase full turnkey and service businesses

- Development of technologies
 - Refine technologies for higher efficiency and the fuel flexibility capability

- Regional strategy
 - Use overseas bases to increase the scale of operations
The MHI GTCC Business Model

Specialize in large GT (F/G type) to maximize efficiency of business operations

Maintain consistent volume of business through suitable volume of full turnkey orders

Order Composition

Full turnkey

Services

Stand-alone equipment

< Summary of full turnkey price structure >

Gas turbine
ST, HRSG generator
Site preparation, installation, trial operations

Maintain consistent earnings through growth in turbines serviced by MHI and long-term service agreements

- More long-term service agreements
- Provide servicing for gas turbines of other companies

< Projected Growth in Gas Turbines Serviced >

Gresik power plant in Indonesia

GTCC - Gas Turbine Combined Cycle
FTK - Site preparation, installation, trial operations and delivery
Increase Sales by Offering Exclusive Technologies
GTCC fueled by blast furnace exhaust gas

Blast furnace exhaust gas: A low-calorie (about one-tenth of natural gas) generated as a byproduct of the steelmaking process during the reduction reaction of iron ore and coke

150MW class (about 50 meters)
300MW class (about 60 meters)

World’s largest blast furnace/coke oven gas GTCC (using M701F) Kimitsu Cooperative Thermal Power (began operations in 2004)

Strategic sales promotion by focusing on Asia

Steady Growth in Orders Received

(Source: MHI forecast)
Extensive Use of Fuel Flexibility Technology
Coal and Petroleum IGCC

Compatible with any gasification system

Nippon Oil Negishi (Vacuum Residue IGCC)
Completed in 2003

*Vacume Residue = Vacuum residue gasification

Use Japanese technology in other countries

Jyoban Karyoku, Nakoso Power Plant IGCC Prototype
Slated for completion in 2007

Petroleum IGCC
Coal IGCC
Fuel flexibility technology

Cross section of power train

GEN. ST GT (M701F)
HRSG

Completed in 2003

Slated for completion in 2007
MPS (Mitsubishi Power Systems)

Objective
Provide total activities including sales, engineering, project management and service for MHI fleet to expand the business in the U.S. power market.

Profile
• Established: April 2001
• Activities: Repair of Hot gas path parts, Remote monitoring of operating plants, field services for gas and steam turbines.
• Employees: 337 (as of July 31, 2005)

Head Office of MPS

OSC (Orlando Service Center)
Guangzhou Joint Venture (Mitsubishi Heavy Industries Dongfang Gas Turbine (Guangzhou) Co., Ltd.)

Objective

Participate in the bulk gas turbine projects and establish the local production capability to enter the power market in China

- **Established**: July 2004 (receipt of government approval)
- **Inauguration**: September 9, 2005
- **Activities**: Sales, Manufacturing and repair of core components of gas turbines
- **Share holders**: MHI (51%), Dongfang Steam Turbine Works (49%)
- **Employees**: 94 (including 72 in manufacturing dept.)
The F Revolution — A Campaign to Increase Productivity

MHI is conducting a campaign aimed at higher quality and efficiency of manufacturing activities by returning to the basics of manufacturing.

The Three F’s
- **Flow**: Continuous flow processing
- **Fast**: Faster manufacturing and improvement speed
- **Fine**: Earning customer satisfaction by delivering fine quality

The F Revolution began in October 2001 with a numerous steady programs for production and development activities.

(The revolution is expanding into other factories of MHI and our business partners.)

Achievement of Productivity

$$\text{Productivity} = \frac{\text{Manufacturing productions}}{\text{Standard hours} \times \text{Work hours}}$$

- Gas turbine Blade & Vane
- Transition piece
- Combustor basket
- Small-size heat exchangers