Strategies for the Energy & Environment Business

June 1, 2011

Takato Nishizawa Executive Vice President Energy & Environment Business

- 1. The Role of the Sustainability Energy & Environment Strategic Planning Department
- 2. Initiatives for Earthquake Disaster Reconstruction
- **3. Initiatives for the Energy & Environment Business**
- 4. New Initiatives on a Company-wide Basis
- 5. Summary

We humbly extend our heartfelt sympathies to all those affected by the Great East Japan Earthquake, and offer warm wishes for the swift recovery of the affected areas.

For its part, MHI intends to make a concerted effort to support earthquake disaster reconstruction.

1. The Role of the Sustainability Energy & Environment Strategic Planning Department

1. The Role of the Sustainability Energy & Environment Strategic Planning Department The Role of the Sustainability Energy & Environment Strategic Planning Department

Leading Role at MHI in Energy & Environment Business Development	
Formulates Medium-to-Long-Term Development Policies	
Makes Recommendations to Governmental and Industrial Circles	
Promotes the Creation of Business Opportunities on a Company-wide Basis	
+	
Leading Role at MHI in Earthquake	

Disaster Reconstruction Support

Support Related to the Fukushima Nuclear Power Plant

Waste Disposal

New Town Development

2. Initiatives for Earthquake Disaster Reconstruction

Overview of the Great East Japan Earthquake (Comparison with the Great Hanshin-Awaji Earthquake)

Great Hanshin-Awaji Earthquake:	Urban-centered earthquake. Damages from the earthquake were primarily caused by widespread disruption to lifelines, and the
	collapse of buildings and homes and the outbreak of fires.
Great East Japan Earthquake:	Widespread earthquake that affected Tokyo and nine prefectures, mainly Iwate, Miyagi and Fukushima prefectures. In addition to
	damages caused by the earthquake itself, damages due to the ensuing tsunami, fires, liquefaction phenomena, incident at the
	Fukushima Daijchi Nuclear Power Plant and so on were wide-ranging.

	Damages	Great Hanshin-Awaji Earthquake	Great East Japan Earthquake (data released as of May 10, 2011)				
Date and	Time of Occurrence	January 17, 1995 at 5:45:52 a.m.	March 11, 2011 at 2:46 p.m.				
Ea	rthquake Type	Inland Epicentral Earthquake (M7.2)	Offshore Epicentral Earthquake (M9.0)				
Damages		Damage due to the collapse of buildings Damage due to fires	Damage due to the collapse of buildings Damage due to tsunami Damage due to incident at the Fukushima Daiichi Nuclear Power Plant				
Regions w	here Damage Occurred	Region centered around Southeast Hyogo (Awaji/Hanshin districts)	Damage in Tokyo and nine prefectures including Iwate, Miyagi and Fukushima prefectures				
	Deaths	6,434 people	14,786 people				
Casualties	Missing Persons	Missing Persons 3 people 9,982 people					
	Injured	43,792 people 8,402 people					
Evac	uees (Maximum)	At least 300,000 people	At least 450,000 people				
	Completely Destroyed	104,906 homes	83,586 homes				
Housing Damage	Partially Destroyed	144,274 homes	31,747 homes completely				
Duninge	Partially Damaged	390,506 homes	273,114 homes destroyed				
]	Fire Damage	7,483 homes	265 cases				
	Roads	10,069 locations	2,126 locations				
Other	Bridges	320 locations	56 locations Direct damage to infrastructure such				
Damage	Rivers	430 locations	4 locations as roads and bridges				
	Landslides	378 locations	136 locations comparatively less				
Amount of Rubble Produced		Approx. 20 million tons	Approx. 24.9 million tons (Estimate for three prefectures of Iwate, Miyagi and Fukushima)				
Р	ower Outages	2.6 million cases	8.45 million households				
Total Amount of Damage		Approx. 10 trillion yen	Approx. 25 trillion yen or more				

Sources: Produced based on information from the Ministry of the Environment, Fire and Disaster Management Agency, National Police Agency, Wikipedia, etc.

Our Technologies, Your Tomorrow

MHI Response Status on Emergency and Temporary Measures

- 1) Restoration of damaged power plants
- 2) Support for the Fukushima Daiichi Nuclear Power Plant
- 3) Removal of rubble (shielded forklift trucks, mobile radiation shielded control rooms, etc.)
- 4) Other measures ("Mega-Float", etc.)

Use of MHI-owned aircraft to transport medical supplies

Transportation of emergency supplies via MHI helicopter

Free loan of MHI-owned electric vehicles to electric power companies

Mobile radiation shielded control rooms

Large, special forklift trucks with shielded cabin

Modification of "Mega-Float"

Direction and Challenges in the Reconstruction Process Ahead

Apart from reconstruction of the disaster-affected areas, it is necessary to clarify energy problems and action plans for non-affected areas.

Item

Direction of Response

Envisaged Challenges

Energy Problems	Response to power shortages as an immediate problem	Full load operation of conventional power generation. Introduction of privately-owned power generating equipment Responding to government calls to conserve electricity	 Securing power in the disaster-affected areas Higher consumer-side costs due to increased demand for fossil fuels and the operation of in-house power generation Increased costs for business operators due to the adoption of conventional power generating equipment Sluggish business activity due to energy-saving measures 					
	Review of long-term energy plans	Maintenance and promotion of nuclear power after a review of safety standards Higher percentage of conventional power generation	 Rising unit price of power generation in the long term (The unit cost of generating power through conventional power generation and renewable energy is higher) Overconfidence in renewable energy (Photovoltaic power, wind power, etc. are more difficult to 					
		Adoption of renewable energy	establish than major sources of electricity) ● Increased CO ₂ emissions					
D	Reconstructio	Restoration to former state	 Possibility of recurrence of disaster Likelihood that residents, industries, etc. will not return to normal even if infrastructure is restored to its former state 					
irectio	n efforts in the disaster-	Reconstruction with the provision of measures to prevent disaster recurrence	 What degree of investment costs for disaster prevention measures or added value are expected? 					
on of R	affected areas	Reconstruction with the provision of other added value	• Is reconstruction being carried out in a manner consistent with the characteristics of the region?					
econst		Town revitalization with disaster prevention functions	• What degree of investment costs for disaster prevention measures or added value are expected?					
Direction of Reconstruction	Response for non-affected areas	Town revitalization accounting for diversification of dispersed power sources and communications, etc.	• Is reconstruction being carried out in a manner consistent with the characteristics of the region?					
	arcas	Town revitalization with the provision of other added value	• Burden of costs and recovery methods associated with response in non-affected areas.					

Community Concept for Reconstruction

Forming Communities Consistent with Regional Diversity

> Required management and combination of systems based on regional characteristics

Examples of combinations of elemental technologies derived from smart communities based on regional characteristics

Region	Regional Ch	naracteristics	Cor	mbinations o (Energy E	Other Technologies Applied				
	Major Industry	Abundant Energy Potential	Wind Power	Geothermal Power	Hydropower	Solar Energy	Biomass	Hot/Cold Heat Supply System	Electrical Storage Device
Region A	Fishing	Wind	1	—	—	1	—	✓	1
Region B	Agriculture	Water	—	—	1	1	—	—	✓
Region C	Forestry	Biomass	—	—	1		1	—	—
Region D	Tourism	Geothermal	—	1	—	1	—	—	√
÷	÷	:	:	:	:	:	:	:	
Region X	Industrial	Exhaust Heat	1	—	—	1	—	√	✓

Conceptual Image of Communities that Make Use of Regional Characteristics

Features of the Reconstruction Project

- Variety of reconstruction plans based on regional characteristics
- Use of a wide variety of technologies
- Management of phased construction spanning long periods
- Coordination with many stakeholders
- Creation and management of requirement specifications
- Assurance of performance in terms of budget, work schedule and overall

<u>The key to success of</u> <u>the Reconstruction Project</u>

Human resources and organizations equipped with project management & system integration techniques are essential

2. Initiatives for Earthquake Disaster Reconstruction

Conceptual Image of a Community Designed for Disaster Recovery (Fishing Industry)

3. Initiatives for the Energy & Environment Business

MHI Initiatives for the Energy & Environment Business

Market Environment

- Review of government energy policies due to the earthquake (Nuclear power is needed, after utilizing the lessons learned from the earthquake and reviewing safety standards)
- In the medium-to-long term, the global tide of "transition to a low-carbon society" remains unchanged.

MHI's Role

The provision of solutions that address the needs of the market with a wide array of product technologies and the integration capability.

Key Technologies and System Integration

- Integrate key technologies that straddle multiple divisions and provide total solutions in the Energy & Environment Business.
- Contribute to safe, secure and comfortable community development.

State of Progress for Each Project

Pro	oject	State of Progress						
	India	Pre-Feasibility study regarding development of the Changodar-Sanand district of Gujarat State, India completed. MHI has proposed the promotion electrification of the transportation infrastructure and the adoption of renewable energies in line with improvements to power generating facilities and the stage of economic development. In January 2011, a memorandum of understanding (MOU) regarding urban development was concluded between the state government and the Delhi-Mumbai Industrial Corridor (DMIC) development consortium. A feasibility study is scheduled to be conducted by March 2012.						
Smart Community	China	Joined the Eco-city concept as a Project member. Proposing an electric and thermal energy management business in the region.						
	Spain	Agreement reached to conduct demonstrations of an EV management center, power management, information system management, etc. in Malaga, Andalusia. A feasibility study will be completed by July 2011, with the demonstration project scheduled to be conducted by March 2016.						
	Keihanna Area	In addition to demonstrations of demand-side energy management, demonstrations of regional energy management including EVs and lifestyle-oriented aspects will be conducted by March 2015 at KEIHANNA, Kansai Science City in Kyoto Prefecture.						
Lithium Ion	Japan	Construction of the Nagasaki Plant finished in November 2010 ahead of a full-scale entry into the field. In February 2011 in Kyoto and March 2011 in Aomori, trial operations of electric buses carrying regular passengers were conducted.						
Battery Business	Canada	In December 2010, MHI signed an MOU with the Manitoba Provincial Government concerning the expanded use of renewable energy and the development of related technologies. A three-year electric bus development and demonstration project commenced in May 2011.						
Offshore Wind Turbines	U.K.	Concluded an MOU with the U.K. government, and currently being subsidized to work on a development project for offshore wind turbines. In July 2010, concluded an MOU with U.Kbased Scottish and Southern Energy plc on the development of low-carbon energy. In December 2010, MHI acquired Artemis Intelligent Power for its gearless hydraulic system.						
Concentrated Solar Power Generation	Australia	Aiming for the early development and market launch of dry-type solar thermal power generation utilizing MHI's gas turbine technologies, and the deployment of this type of power generation in desert regions. Experiments on heat receivers in conjunction with Australia's CSIRO are currently under way.						
Overseas Nuclear Power Plants	U.S., Southeast Asia, Middle East, Europe	There have been concerns over the impact of earthquakes, but MHI is continuing to provide support for locations in the U.S., Europe, Vietnam and Jordan.						
IGCC High-Efficiency GT	Australia, U.S., China, Japan	Working on IGCC projects in Australia and China. Succeeded in the demonstrated operation of gas turbines with the world's highest inlet temperature of 1,600 °C. Attained 60% efficiency, a world high.						
Geothermal and Hydroelectric Power Generation	Africa, Turkey	Working in conjunction with Iceland-based Reykjavik Energy on the development of geothermal power generation in Africa. Proposing a feasibility study for a electric power stability system that combines wind power generation with pumped-storage generation in Turkey.						

DMIC: Delhi Mumbai Industrial Corridor

IGCC: Integrated Coal Gasification Combined Cycle

Concepts for Smart-Adoption

Smart concepts are also applied to other public services, and being further developed.

	Electric Power	Gas	Heat Supply	Water	Road Traffic		
Input from End Points	Reverse power flow through photovoltaic power generation and Ene-farm	Injection of methane gas into city gas lines	Use of sludge carbides for fuel	Introduction of reclaimed water	-		
Response to Load Fluctuations	Adoption of storage batteries, EVs Demand Management	Adjustment of hot- water supply times and hot-water storage	Adoption of high- efficiency heat sources on a small-to-medium scale, heat storage tanks	Tracking of changes in water treatment levels	Overall optimization of navigation		
Dynamic Control	Line duplexing and Distribution automation			Pipeline control	Autonomous distributed traffic signals		
End-point Measurement Tools	Smart Metering	Smart Metering	Smart Metering	Smart Metering	Probe information through in-car device		
Inducing Consumers (Incentives)	Dynamic Pricing	Dynamic Pricing Dynamic Pricing		Dynamic Pricing	ERP Automated Road Pricing System		
Payment and Billing Management	Common points, unified billing						

MHI's Strengths: Not only various product technologies, but MHI also uses project management and system integration technologies to provide total solutions.

Major Smart Community Projects

Mitsubishi Heavy Industries, Ltd. owns all intellectual property rights concerning these materials.

Smart Community Initiatives

3. Initiatives for the Energy & Environment Business

Smart Community: Life System Example (Keihanna)

By building total solutions for water and waste materials that utilize existing infrastructure into a CEMS, realize a low-carbon community in both arterial and venous systems.

Smart Community: Traffic System Example (Spain)

By combining EVs into a CEMS as a type of energy equipment, realize energy management such as the smooth charging of EVs, peak cut, and so on.

4. New Initiatives on a Company-wide Basis

Company-wide Initiatives (Water Business)

Market forecas (METI estimat (Breakdown) Volum Growt MHI will aim for	tal Water S	olution								
Business FieldMaterials/Component Supply Consulting Construction and DesignManagement and Operation ServicesTotal										
Clean Water		19 trill	ion yen	2	0 trillion yen	39 trillion yen				
Seawater Desalinatio	on	1 trilli	ion yen		3 trillion yen	4 trillion yen		11		LHX00E
Industrial Water / Indus Sewage	strial	5 trill	5 trillion yen 2 trillion yen		1 trillion yen 6 trillion yen					
Recycled Water		2 trill			—	– 2 trillion yen		A A A A A A A A A A A A A A A A A A A		
Sewage		21 trill	ion yen	14 trillion yen		35 trillion yen				
Total		49 trilli	ion yen	3	8 trillion yen	86 trillion yen				
: Volume Zone (M									l possesses a essary techn	
Corresponding Technology Operational Field	nology Activated Sludge		Filtration		Condensation of Precipitation	MBR (UF Membrane)	Tr (Activ Treatr	aced Sewage eatment ated Carbon nent, Ozone eatment	Seawater Desalination (RO Membrane)	Sludge Treatment (Dehydration / Drying / Incineration / Carbonization)
Clean Water	Clean Water				•					
Seawater Desalination					•				•	
Industrial Water / Industrial Sewage		•	•		•	•		•		•
Recycled Water					•	•				
Sewage	Sewage									
: Necessary Fields : Unnecessary Fields : Technologies possessed by MHI * MBR: Membrane Bio Reactor, UF: Ultra Filtration, RO: Reverse Osmosis										

Mitsubishi Heavy Industries, Ltd. owns all intellectual property rights concerning these materials.

Our Technologies, Your Tomorrow

An example of Water Business (Total Solution for the Water Cycle)

Company-wide Initiatives (Biomass)

An example of biomass (MHI's Achievements)

5. Summary

Fulfillment of Company-wide Functions

The Sustainability Energy & Environment Strategic Planning Department will continue to fulfill company-wide functions assuming a **leading internal role in the development of the Energy & Environment Business and support for earthquake reconstruction efforts**, and will promote business development and reconstruction support.

Contributing to Community Development Based on Regional Characteristics

With regard to support for earthquake reconstruction efforts, MHI will apply a wide range of its product technologies in a flexible manner and contribute to development of robust & resilient community against disasters based on regional diversity.

Development of New Business Areas with Future Growth Prospects

Regarding development of the Energy & Environment Business, we will continue to challenge aggressively the **development of new business areas** with future growth prospects such as **smart communities**, the water business and biomass.

Provision of Total Solutions

We will continue to **provide total solutions in the Energy & Environment Business area** by using of **Project Management** and **System Integration technologies** which are strengths of MHI Group.

Our Technologies, Your Tomorrow

Forecasts regarding future performance in these materials are based on judgment made in accordance with information available at the time this presentation was prepared. As such, those projections involve risks and insecurity. For this reason, investors are recommended not to depend solely on these projections for making investment decision. It is possible that actual results may change significantly from these projections for a number of factors. Such factors include, but are not limited to, economic trends affecting the Company's operating environment, currency movement of the yen value to the U.S. dollar and other foreign currencies, and trends of stock markets in Japan.