Mitsubishi Heavy **GTCC** Business Briefing

Industries, Ltd.

2025/10/7

Mitsubishi Heavy Industries, Ltd.

- 1. MHI Gas Turbine Business
- 2. MHI Gas Turbine Technology
- 3. MHI Energy Transition Initiatives

1. MHI Gas Turbine Business

Overview of Mitsubishi Heavy Industries (MHI) Group

1884 Foundation over 140 years history

77,274 Employees
(Consolidated, As of March 31, 2025)

256 Group Companies (Consolidated, As of March 31, 2025).

5,027.1 Billion Yen Revenue

Business Area

Energy Systems, Plants & Infrastructure Systems, Logistics, Thermal & Drive Systems, Aircraft, Defense & Space

Main Products

Aero Engines

Marine Machinery

Nuclear Energy Systems

CO₂ Capture Plants

Transportation

Waste-to-Energy

Aerospace

Frigate

Positioning of MHI GTCC Business (FY24 Revenue/Consolidated)

Financial Results by Segment

Financial Results: Energy Systems

Financial Results Highlights: GTCC Order Intake and Revenue

- In many cases, long-term after-sales contracts are signed at time of new installation order intake, thereby securing future revenue
- Working to increase production capacity for main gas turbine components

Large Frame Gas Turbine Order Intake and Contract Backlog (units)

	FY2023	FY2024
Americas	7	11
Asia	9	5
EMEA	-	9
Other Regions	1	-
Order Intake Total	17	25
Contract Backlog	36	48

Q1 FY24	Q1 FY25
4	6
2	2
-	-
-	-
6	8
38	53

(Reference) China Licensee Order Intake

	FY2023	FY2024
Order Intake	21	7

Q1 FY24	Q1 FY25
-	3

CY2024 Gas Turbine Market Volume

- GT market volume reached 57.4 GW in 2024, the highest since 2018
- In 1H 2025, GT market volume had already reached 41.7 GW, with the speed growth exceeding 2024
- Demand in North America and MENA has increased dramatically

Historical GT Market Volume ΘW 60 50 40 30 Jun 50.4 43.6 41.7 20 40.3 39.7 34.6 10 0 2019 2020 2021 2022 2023 2024 2025

Market Volume by Region (CY2024 and 1H CY2025)

(Courtesy McCoy Power Reports)

MHI's Gas Turbine Orders and Market Share

Units
33
6
206
245

Model	Units	
M501D	26	
M701D	109	
Total	135	

Total	337
M701F	257
M501F	80
Model	Units

Total	102
M701G	11
M501G	91
Model	Units

Total	172
M701J	58
M501J	114
Model	Units

Total	624
FT8	610
FT4000	14
Model	Units

Grand Total		
1,819 Units		
Including GT manufactured by licensee and awarded PJ		

In addition, 204 units of M series Mid&Small Class GTs.

As of August 31, 2025

GTCC Global Network: Sales Offices

GTCC Global Network: Manufacturing & Service Bases

MHI has 10 major gas turbine parts manufacturing and repair bases worldwide

GTCC Business Division Manufacturing Bases in Japan

Takasago Machinery Works

Main products:

- ·Large frame gas turbines
- ·Steam turbines

Hokkaido Thermal Power Department Tohoku Thermal Power Department Hokuriku Thermal Power Department Chubu Thermal Power Department Chugoku Thermal **Power Department** Kansai Thermal Power Department Kyushu Thermal Shikoku Thermal Power Department Power Department

Domestic Bases

Hitachi Works

Main products:

- ·Small and mid-size gas turbines
- ·Steam turbines

2. MHI Gas Turbine Technology

How Gas Turbines and GTCC Power Plants Work

Combined cycle efficiency can be improved by increasing gas turbine inlet temperature

Gas Turbine Layout

Generator

- Main components are compressor, combustor, and turbine.
- High pressure, high temperature gas from combustion of fuel gas expands and produces power by rotating the turbine

Combined Cycle Power Plant Layout

- After generating electricity with the gas turbine, gas turbine exhaust heat is utilized to generate additional electricity with a steam turbine
- Combined cycle (gas turbine + steam turbine) achieves the highest thermal efficiency

History of MHI Gas Turbine Business

1970-

.

1950-

1880-

Building Japan's infrastructure

1884 Established Mitsubishi Heavy Industries

1908 Developed Japan's first Steam Turbine

Contributing to Japan's rapid economic growth

1960 Started gas turbine business in technical partnership

Providing solutions to fuel diversity and energy efficiency globally

1986 Became original developer of high efficiency gas turbines

Leading a carbon-neutral world through technology

2010-

2011 J-series gas turbine inlet temperature 1,600°C demonstration completed

2018 Successfully tested a large-scale turbine using 30% hydrogen fuel mix

2020 Next generation 1,650°C class gas turbine M501JAC demonstration start

2021 Started development of ammonium fueled gas turbine

2025 J-series gas turbine operating hours exceed 3 million hours, Cumulative orders of 172 units

1868-Japan's Industrial Revolution

1973 / 1979Oil Crisis

2015The Paris Agreement on climate change

■ MHI offers a wide range of Gas Turbines – from small frame to large frame.

M701JAC GTCC Output: 840MW (50 Hz), equivalent to 2 million households' worth of electricity, which covers Yokohama City (1.8 million households).

Large Frame Gas Turbine (JAC-Series)

Contributing to the achievement of Carbon Neutrality with our world-leading power generation technology

High efficiency

Achieved 64% CC efficiency with

- High pressure ratio compressor (25:1)
- Enhanced air-cooled combustors
- Advanced thermal barrier coating (TBC)

High reliability

Cumulative total operating hours exceeds 3 million hours

Booked units: 172(J/JAC series as of August 2025)

Fuel flexibility

Compatible with a variety of fuels:

- Fossil fuels (natural gas, oil)
- Clean fuels (hydrogen)

Type 2 Combustor

Completed design of combustor for 30% H₂ co-firing in 2018.

30% H₂ co-firing operation was successfully achieved at T-Point 2 in 2023.

Small Frame Gas Turbine (H-25-Series)

- 30-40 MW gas turbine optimized for cogeneration* systems. Extensive track record of over 30 years.
- Developing combustors for use with hydrogen and ammonia

Compatible with a variety of fuels:

- Fossil fuels (natural gas, oil)
- Clean fuels (hydrogen)

Type 3 Combustor

Demonstration of 100% H₂ firing began at Takasago Machinery Works in 2024

High Efficiency

More than 80% Total Cogeneration Efficiency

Simple cycle 36.2%Combined cycle 54.0%

- Cogeneration Over 80.0%

79 ton/h (heat output)

High Reliability

Cumulative total operating hours exceeds 12.5 million hours

- Booked units: 206 (H-25 as of August 2025)

Commercial-Scale Power Plant for Long Term Validation: T-Point 2

- Since 1997, all new gas turbine models have been validated in our on-site, commercial-scale power plant
- In 2020, renovations were completed, allowing for the validation of more advanced gas turbine technologies with larger capacities

	T-Point	T-Point 2
Output (@5°C)	389MW	566MW
GT Type	M501J	M501JAC
Began Operation	June 1997	July 2020
Turbine Inlet Temp.	1,600°C	1,650°C
Combustor Cooling Method	Steam Cooled	Air Cooled
CC Efficiency ³	62% LHV ⁴	>64% LHV

Takasago Hydrogen Park

Power Generation

Small & Mid-size Gas Turbine (40MW)

Large Frame Gas Turbine (566MW)

Production

Green Hydrogen production technologies for geographies with many renewable energy resources

Alkaline water electrolyzer (in operation)

SOEC* (in demonstration operation)

Anion Exchange Membrane (AEM) water electrolyzer

Turquoise hydrogen production technologies for geographies with few renewable energy resources

Methane Pyrolysis

Storage

Hydrogen
Storage
350 → 1050 Units

Takasago Hydrogen Park schedule

21

Started operation of alkaline water electrolyzer September 2023:

November 2023: 30% hydrogen co-firing operation with M501JAC Gas Turbine using hydrogen

produced by alkaline water electrolyzer

100% hydrogen firing operation with H-25 gas turbine 2024:

Hydrogen storage to be increased to 117,000 Nm³ (1,050 units) 2024-2025:

		CY2023	CY2024	CY2025	CY2026	'27 '28	3 729
Hydrogen Production	Alkaline Water Electrolyzer	Un	der demonstration operation	>>>>	Start operation Advanced Clean	(40 units) n Energy Storage PJ	
	SOEC		MW-class validation (plan)	Commer- cialization (plan)			
	Methane Pyrolysis						
Hydrogen Storage	Storage	350 cylinders	1,0	on of 50% hydrogen co-firing	g		
Power Generation Validation	Large Frame GT	II Co-Freq Rec 30.5 arts	30% H ₂ co-firing operation	Over 30% co-firing	Start 30% H ₂ co-firing op g operation (plan)	eration at Advanced Clean Energy Storage PJ	
	Small & Mid-Size GT			100% H ₂ firing operation	(plan)		

Alkaline Water Electrolyzer

SOEC

SOEC

SOEC: Solid Oxide Electrolysis Cell

Methane Pyrolysis

3. MHI Energy Transition Initiatives

Roadmap for Decarbonizing Existing Infrastructure

■ Reducing, capturing, and eliminating CO₂ is one path to decarbonizing thermal power

Conversion to Hydrogen/Ammonia Gas Turbine

■ Fuel conversion from natural gas to hydrogen/ammonia is easily achieved by replacing combustors and adding fuel systems

Hydrogen Firing Gas Turbine project in United States (1)

Advanced Clean Energy Storage Project (USA)

- Green hydrogen production by electrolyzers using renewable energy from the West Coast.
- 2. Storage in salt caverns in North America.
- Power generation by gas turbine on demand.
- 4. DOE Loan application submitted for up to \$595 million

Mitsubishi Heavy Industries to supply two hydrogen-capable M501JAC gas turbine power trains (1x1) to Intermountain Power Agency. Plans to co-fire 30% hydrogen in 2026 and operate with 100% hydrogen no later than 2045.

Hydrogen Gas Turbine Projects in the United States 2

■ 50% hydrogen blend testing successfully completed at Georgia Power's Plant McDonough-Atkinson

Fig. Diagram of Hydrogen Installation

Photo: Hydrogen co-firing project (2012 COD existing GTCC power plant)

- Successfully completed 50% hydrogen fuel blending at both partial and full load on an M501GAC natural gas turbine
- Carried out hydrogen system logic and combustor safely, and achieved less than 15 ppm in NO_x emissions

Reference Materials

Materials		URL (QR code)	URL	Materials		URL (QR code)	URL
TAKASAGO MACHINERY WORKS	TAKASAGO MACHINERY WORKS		https://www.mhi .com/company/l ocation/takasag ow/catalogue.p df	Carbon Neutrality Handbook	Mission Neutrality Handbook Mission Neutrality Handbook Mission Net Zero		https://www.mhi .com/company/ overview/carbo n- neutral/pdf/cn_h andbook_2022. pdf
T-POINT 2 (Proving Ground for Gas Turbine Advancements)	T-POINT 2 Proving Ground for Gas Turbine Advancements		https://power.m hi.com/catalogu e/pdf/t- point2.pdf	HYDROGEN POWER GENERATION HANDBOOK	HYDROGEN POWER GENERATION HANDBOOK 67th Catter Towards the resilication of biografic hydrogen technologies from prefection to power generation from prefection to power generation from production to power generation to power genera		https://power.m hi.com/catalogu e/pdf/hydrogen _en.pdf
GTCC (Gas Turbine Combined Cycle Power Plants)	GTCC Gas Intrins Contained Cycle Perer Perss Personal Contained Cycle Personal Cycle Personal Cycle Personal Cycle Personal Cycle Personal Cycle		https://power.m hi.com/catalogu e/pdf/gtcc.pdf				

