MOVE THE WORLD FORW>RD MITSUBISHI HEAVY INDUSTRIES GROUP

E

The Potential of CCUS

2021.10.12 Mitsubishi Heavy Industries

© Mitsubishi Heavy Industries, Ltd. All Rights Reserved.

SECTION 1 | Expectations for CCUS

- Annual CO₂ Capture Required to Achieve Carbon Neutrality by 2050
- CCUS Challenges
- Status of CCUS CO₂ storage

SECTION 2 | MHI's Contributions to CCUS

- **Three CCUS Frameworks:** $(CO_2NTAIN / CO_2NNECT / CO_2NVERT)$
- Timeline

SECTION 1 | Expectations for CCUS

- Annual CO₂ Capture Required to Achieve Carbon Neutrality by 2050
- CCUS Challenges
- Status of CCUS CO₂ storage

SECTION 2 | MHI's Contributions to CCUS

Three CCUS Frameworks: $(CO_2NTAIN / CO_2NNECT / CO_2NVERT)$

© Mitsubishi Heavy Industries, Ltd. All Rights Reserved.

Annual CO₂ Capture Required to Achieve Carbon Neutrality by 2050

- A variety of methods to reduce anthropogenic CO₂ emissions are needed to achieve Carbon Neutrality by 2050. However, even after these reduction efforts, around 4.3-13 Gtons/year of CO₂ emissions are expected to remain.
- To capture this remaining CO₂, 100 to 300 times the current global CO₂ capture capacity will be needed
- By 2050, CO₂ capture will operate in a wide range of industries, including manufacturing, fuel production (including blue fuels), power generation, aviation, and transportation

CCUS will be essential in a wide range of industries in the future

1 Annual estimates based on MHI internal analysis of reports including: McKinsey "1.5°C Scenario Analysis"; International Energy Agency (IEA) "Net Zero by 2050"; IEA "Sustainable Development Scenario"; Intergovernmental Panel on Climate Change (various reports)

 These figures were calculated by multiplying the expected volume of captured CO₂ according to IEA's 2017 Annual Report

(2 Gtons/yr by 2030 and 8.6 Gtons/yr by 2050) and the average cost* of CO₂ capture

*Average of cost estimates for Japan, U.S., and China

The CO_2 capture market is expected to reach approx. 6 trillion yen by 2030 and exceed 10 trillion yen by 2050

Source: Prepared by Japan Ministry of Economy, Trade and Industry (METI) from materials first presented by the Green Innovation Promotion Council Working Group

https://www.meti.go.jp/policy/energy_environment/global_warming/roadmap/innovation/ccus.html

CCUS Challenges

CCUS is an abbreviation of <u>CO₂ Capture</u>, <u>U</u>tilization, and <u>S</u>torage

(Transportation is also required, though it is not included in the acronym)

CCUS faces institutional, scaling, and technical challenges – all of which require innovative solutions to overcome

	CC	T	U	S	
				Storage Storage	
Institutional Challenges	 Balancing CO₂ emissions reduction measures with carbon taxes and carbon pricing Incentives for Corporate Social Responsibility (CSR) initiatives 	 Scope of responsibility for those bearing transportation costs unclear Unable to proceed with investment due to uncertain demand 	 "Green premium" presents little real value Difficult to link directly to CO₂ sequestration 	 Environmental assessment criteria, including for monitoring, not yet decided Complexity in storage business model deterring investment 	
Scaling Challenges	 Limited demand for CO₂ downstream after capture High CAPEX and OPEX for CO₂ capture systems 	 Transmission and transportation capacity limited Transportation costs high 	 No novel use cases for captured CO₂. Mainly replacement of current sources for conventional products. Low to no profitability discourages new entrants 	 Active storage sites few in number and inaccessible from many countries and regions High costs due to remote, deep underground storage locations 	
Technical Challenges	 Few capture technologies are commercially ready. Urgent need for expansion of use cases. 	 High-volume marine CO₂ transport technology not yet established 	Limited options for CO ₂ conversion/use	Monitoring technology still in early development phase	

Status of CCUS CO₂ Storage Efforts

- CCS development plans underway mainly in the Americas and Europe
- Size of current CO₂ storage projects ranges from 1 to 35 Mtons/year. Hundreds of storage sites of similar size need to be developed around the world to store the projected 4.3 to 13 Gtons/year of remaining emissions.
- According to the International Energy Agency, worldwide storage potential is estimated to be more than 8 trillion tons (equivalent to more than 600 years of emissions at projected 2050 levels)

Vast acceleration of CCS expansion, including significant increase in number of storage sites and construction of a CO_2 network that includes transportation are needed

CCS projects in operation or development

Source: Global CCS Institute, 2020. The Global Status of CCS: 2020. Australia.

https://www.globalccsinstitute.com/wp-content/uploads/2021/09/Global-Status-of-CCS-Report-Jan-28-1.pdf IEA, Energy Technology Perspectives 2020

SECTION 1 | Expectations for CCUS

- Annual CO₂ Capture Required to Achieve Carbon Neutrality by 2050
 CCUS Challenges
- Status of CCUS CO₂ storage

SECTION 2 | MHI's Contributions to CCUS

Three CCUS Frameworks: $(CO_2NTAIN / CO_2NNECT / CO_2NVERT)$

Timeline

Three CCUS Frameworks ($CO_2NTAIN \cdot CO_2NNECT \cdot CO_2NVERT$)

MHI proposes three frameworks to address CCUS technical and scaling challenges

MHI's CCUS Business Frameworks

- KM CDR Process[™]: CO₂ Capture Technology with the World's Top Market Share
- Voice of the Customer
- CO₂ Capture from a Variety of Emissions Sources
- Voices of Our Partners: drax

CO₂NTAIN – KM CDR Process[™]: CO₂ Capture Technology

A variety of CO₂ capture technologies exists. Currently, chemical absorption is the main method for capturing CO₂ from exhaust gas.

MHI has more than 30 years of experience with the KM CDR ProcessTM, a liquid absorption technology using high performance absorbents (KS-1TM, KS-21TM). We boast a global market share of over 70% in the exhaust gas carbon capture space.

Technology ¹	Characteristics	Development Status	Companies
Chemical (Liquid) Absorption	 CO₂ is dissolved into a liquid absorbent, separated from other exhaust gases, and absorbed through a reaction with absorbent components Suitable for separation from combustion exhaust gas Proven track record at high volumes (5,000 tons per day) Amine-based solvents are frequently used 	Commercially ready. Absorbent development, reduction of equipment costs (CAP/OPEX), and expansion of technology application scope are areas of focus.	MHI Shell Fluor Aker Toshiba
Solid Adsorption	 CO₂ is adsorbed onto a solid adsorbent's surface or through pores After adsorption, CO₂ is desorbed (released) by heat or pressure Some well-known adsorbents include activated carbon and zeolite, which are also used on the International Space Station 	Commercially ready. Increasing equipment size, material development, energy consumption reduction, and expansion of technology application scope are areas of focus.	Air Liquide Air Products Svante CO ₂ Solutions
Membrane Separation	 CO₂ is separated from other gases using osmotic pressure Suitable for separation from high pressure/concentration gases (Not suitable for capturing CO₂ from exhaust gas) 	 Commercially ready for natural gas separation Many new technologies, such as polymeric membranes, are still in the preliminary testing stage. Material development is an area of focus. 	Air Liquid MTE

MHI (KM CDR Process™)

- Amine absorbent process (liquid absorption)
- CO₂ capture rate from exhaust gas: 90% and above
- Captured CO₂ purity: 99.9% and above
- Absorbent: KS-1[™], KS-21[™]
- Absorbent characteristics: Low volatility, high stability

MHI share of exhaust gas CO₂ capture market:

approx. 3.9 Mtons/year of CO₂ captured from approx. 5 Mtons/year of exhaust gas

1 MHI internal comparison of the commercialization status of three main CO₂ capture technologies

CO₂NTAIN – KM CDR Process[™]: CO₂ Capture Technology

- Process flow for chemical absorption of CO₂ is similar across all manufacturers
- Technologies are differentiated by factors such as initial costs, energy input, absorbent performance, and environmental treatment systems

Customers are looking for commercially proven technologies, not prototypes. MHI's proven track record in CO_2 capture plants with capacities from a few to several thousands of tons is a major advantage

Customer feedback indicates that MHI's proven track record, peerless engineering capability, and wide breadth of experience are our strengths

MHI has successfully delivered 13 CO_2 capture plants of a wide range of designs and capacities (range of capture capacity: approx. 200-5,000 tons/day)

" *MHI* is an *ideal partner* for large industrial providers like us – they have **experience** with our industry and the **engineering** *talent* needed to pull this off "

Steel company executive

"This year is the **first time** we're actually **paying for Carbon emissions**. **Tens of millions**. We are taking this seriously, so we need a **serious provider** to show us a new path "

Cement company director

"We don't want to be someone's testing ground. We need a provider with a **proven history and proximity to industry**"

Power generation company business manager

CO₂NTAIN – CO₂ Capture from a Variety of Emissions Sources

- Engineering capability to provide large to small equipment accommodating varying levels of CO₂ capture difficulty is required to address a variety of emissions sources
- CO₂ capture difficulty is based on exhaust gas impurities and temperature, load variability, equipment installation constraints and configuration, and proximity to existing MHI technologies

MHI's CO₂ capture products are highly regarded in many sectors and have moved from validation and feasibility studies to commercial application. Going forward, we will continue to expand our product portfolio

CO₂NTAIN – CO₂ Capture from a Variety of Emissions Sources

CO_2 NTAIN – Voices of Our Partners: **drax**

Will Gardiner

Group Chief Executive Officer, Drax Group PLC

Key Components of the CCUS Value Chain

Participating in the CCUS Value Chain

- CCUS Visualization Platform
- Voices of Our Partners: IBM

CO₂NNECT – Key Components of the CCUS Value Chain

- MHI Group provides core technologies essential for CCUS, including CO₂ capture, transportation, and compression
- We aim to further expand our business in the areas of large liquefied CO₂ carriers and CO₂ compression, which will become important as the volume of captured CO₂ increases
 - MHI is helping to establish a robust value chain by offering a wide variety of CCUS-related technologies

CO2NNECT

CO₂NNECT – Participating in the CCUS Value Chain

- Currently, CCUS business is conducted via bilateral agreements between individual players in each area. As the scale of CCUS expands, we will see larger integration of CCUS business.
- MHI's CCUS business will span the entire process from CO₂ capture to downstream handling (including transportation, storage, and utilization) to reduce initial investment and complexity on the emissions source side

In addition to offering numerous technologies within CCUS, MHI is working to integrate CCUS businesses through the CO₂NNEX platform and other solutions

CO₂NNECT

CO₂NNEX is a digital platform which will enable visualization of the CCUS value chain. MHI jointly announced this product concept with IBM Japan on May 6, 2021.

Working together with several dozens of partners supporting our CO_2NNEX concept, we have formed cross-company working groups and are currently planning trials in Japan and around the world

CO2NNEX

Connecting today with a Net Zero future

 CO_2NNEX will give CO_2 value by connecting and accelerating the development of CO_2 solutions ecosystems around the world. This will help realize a Carbon Neutral world as quickly as possible.

CO₂NNECT – CCUS Value Chain Visualization Platform

- CO₂NNEX will visualize actual CCUS activities in a virtual space using blockchain technology and loT-enabled devices such as smart meters
- CO₂NNEX will quantify value and provide evidence for CO₂ emissions reductions. It will also create a wide range of matching opportunities among participants

This open platform will allow participating companies to build a CO_2 solutions ecosystems together by combining each of their individual business models

CO₂NNECT – Voices of Our Partners:

Akio Yamaguchi

General Manager and President, IBM Japan, Ltd.

0

CO2NNECT

CO₂**NVERT**

Increasing options for CO₂ conversion and accelerating achievement of Carbon Neutrality Utilizing Captured CO₂

MHI's CCU Business Initiatives

CO₂NVERT – Utilizing Captured CO₂

- There are two ways to utilize captured CO₂: direct use and conversion to other valuable commodities
- MHI has experience with direct use and CO₂ in fertilizer production (urea) and enhanced oil recovery
- In addition to experience with CO₂ conversion using chemical synthesis, we are investing in start-ups working in fuel synthesis and other innovative areas

We will grow our portfolio in both conversion and direct use technologies as we explore new methods in a variety of areas

https://www.iea.org/reports/about-ccus

CO₂NVERT – Utilizing Captured CO₂

Based on our expertise in CO₂ capture, we will propose MHI or our partners' technologies to meet the needs of global customers with the goal of realizing a Carbon Neutral world while also generating profit

MHI Group will offer solutions spanning the CO_2 value chain, from capture and utilization technologies to CCU matching

Timeline			Development/validation		
2020		2025		2030	
CCUS Technology/ After-Sales Service Development	KS-1	KS-1 [™] CO ₂ capture plant Current CO₂ absorbent		Source: Technology Center Mongstad	
		 ✓ Aug 2021 KS-21 verification completed at TCM KS-21TM CO₂ capture plant ✓ Jun 2021 Executed license contract with Drax 	CO ₂ absorbent complete/ mercial use		
		✓Aug 2021 Began validation testing of CO ₂ capture system with Kawasaki I Small CO ₂ capture ec ✓Aug 2021 Installed on CC-Ocean vessel	^{Kisen} quipment	Modular CO ₂ capture systems Build product line-up	
		 Sep 2021 Acquired LCO₂ carrier cargo tank Approval in Principle LCO₂ carrier Aug 2021 Began feasibility study on liquefied CO₂ carrier with TotalEnerg 	Large-scale Proceeding _{jies} shipping co	CO ₂ transport with feasibility study with a mpany	
		 ✓ May 2021 Executed MOU for joint development with IBM Japan 	ution platform s ongoing with	potential validation partners	CO2NNEX
Business model	ccus	Technology provider			
		CCUS business Aug 2021 Executed MOU for joint study with SUEZ	CO ₂ capture an services	d downstream handling with m	natching

Thank you for your attention

CCUS is essential to achieving Carbon Neutrality by 2050

- MHI Group has developed a broad portfolio of CCUS-related technologies and will expand our capabilities to cover the entire CCUS ecosystem
- As a global leader in CCUS, we are contributing to both economic development and the reduction of industry's environmental impact

© Mitsubishi Heavy Industries, Ltd. All Rights Reserved.

TOP > CCUS, transport and trade: creating a holistic carbon market

CCUS, transport and trade: creating a holistic carbon market

In order to hit its 2050 net zero target for carbon dioxide emissions, the world will have to virtually eliminate the 40 gigatonnes of CO₂ that it currently pours into the atmosphere every year. Even if the significant growth of renewables and other carbon free energy sources continues, we redouble our efforts to reduce consumption and also improve energy efficiency, a sizeable gap will remain: an annual 4-12 gigatonnes of CO₂ will somehow have to be removed from the atmosphere to reach a carbon neutral world.

https://spectra.mhi.com/ccus-transport-and-trade-creating-a-holistic-carbon-market

Makoto Susaki is leading MHI Group's CCUS business taskforce.

TOP > How carbon capture can become more affordable

How carbon capture can become more affordable

Achieving net-zero goals will be virtually impossible without carbon capture technologies, according to analysis from the International Energy Agency's (IEA) landmark Net Zero by 2050: A Roadmap for the Global Energy Sector report.

Carbon capture, utilization and storage (CCUS) systems trap CO₂ emissions from the exhaust flues of industrial processes, and these are then either used by industry or stored deep below ground.

When retrofitted to existing power or industrial plants, the capture process can prevent many millions of tonnes of CO₂ emissions reaching the atmosphere, help decarbonize hard-to-electrify industrial sectors and support the production of low-carbon hydrogen from fossil fuels. But this emissions-busting technology comes at a cost.

Despite its many benefits, there are currently only <u>26 commercial-scale operations in place globally</u>, capturing 40 million tonnes of carbon dioxide annually. So, when and how will the price of CCUS come down so that it can take off?

https://spectra.mhi.com/how-carbon-capturecan-become-more-affordable

MHI's CCUS technology captures more than 90% of CO2 emissions from power plants @NRG

CO₂NNECT

News Related to CCUS

PRESS INFORMATION

Mitsubishi Shipbuilding Receives Approval in Principle from Classification Society for LCO₂ Carrier Cargo Tank from France's **Bureau Veritas**

2021-09-02

· Project part of MHI Group's effort to expand businesses for the CCUS value chain, utilizing the advanced gas handling technologies of Mitsubishi Shipbuilding.

• With the acquisition of this AIP, MHI Group will focus on developing and offering the technologies needed to bring LCO₂ carriers to the market.

CO2NNEC

PRESS INFORMATION

Mitsubishi Shipbuilding and French Company TotalEnergies Initiate Feasibility Study of LCO₂ Carrier

-- Project for Technology Development and Market Formation in the CCUS Value Chain Aimed at Reducing CO₂ Emissions --

2021-08-26

• Feasibility study launched with the French broad energy company TotalEnergies.

• Project part of MHI Group's effort to expand businesses for the CCUS value chain, utilizing the advanced gas handling technologies of Mitsubishi Shipbuilding.

https://www.mhi.com/news/21082602.html

PRESS INFORMATION

Mitsubishi Shipbuilding Begins Verification Testing of Marine-based CO₂Capture

System

-- "CC-Ocean" Project in Partnership with "K" Line and ClassNK Part of Japan Government Initiative to Support Development of Marine Resource Technologies --

2021-08-05

 Verification testing, a world first on actual voyage, operability and safety evaluations to support practical application of the Marine-based CO₂ Capture System.

• Installation of the equipment completed on board a coal carrier for Tohoku Electric Power operated by "K" Line.

https://www.mhi.com/news/21080501.html

PRESS INFORMATION

MHI and IBM Japan to Develop the "CO₂NNEXTM" Digital Platform for Visualization of the CCUS value chain -- New Platform to Strengthen the CO₂ **Ecosystem and Support Early Achievement** of Carbon Neutrality --

2021-05-06

 Visualization of the CCUS (CO₂ Capture, Utilization and Storage) value chain and streamlining of the CO₂ supply chain will highlight existing issues and expand the range of utilization options. • MHI to build efficient CO₂ infrastructure in the physical world, with IBM Japan handling the digital network in the cyber world.

https://www.mhi.com/news/210506.html

News Related to CCUS

PRESS INFORMATION

NextDecade and Mitsubishi Heavy Industries America Execute Engineering Services Agreement for Carbon Capture at **Rio Grande LNG Project in Texas**

2021-04-14

NextDecade Corporation

Mitsubishi Heavy Industries America, Inc.

HOUSTON -- April 14, 2021 -- NextDecade Corporation (NextDecade) (NASDAQ: NEXT) and Mitsubishi Heavy Industries America, Inc. (MHIA), part of Mitsubishi Heavy Industries (MHI) Group, have announced today that they have signed an engineering services agreement (ESA) for the design, license, and performance guarantee of the KM CDR ProcessTM, a post-combustion carbon capture technology to be applied at NextDecade's Rio Grande LNG project in the Port of Brownsville, Texas.

https://www.mhi.com/news/210414.html

PRESS INFORMATION

Mitsubishi Heavy Industries Engineering to test carbon capture technology at **Technology Centre Mongstad in Norway**

2021-03-04

Mitsubishi Heavy Industries Engineering Technology Centre Mongstad

• Testing of proprietary solvent KS-21TM will start from May 2021 at TCM

TCM offers state-of-the-art facilities and expertise to ensure successful demonstration

MHIENG aims to expand its carbon capture business in the United Kingdom and Europe

CO2NTAIN

https://www.mhi.com/news/210304.html

CO2NTAIN

PRESS INFORMATION

Low Carbon on Cement Possible with CCS 2021-01-21

in

Edmonton, January 21, 2021 - A low carbon future for cement is advancing through a unique feasibility study to see carbon capture and storage (CCS) on Lehigh Cement's plant in Edmonton, Alberta. Recognizing the substantial role that large-scale CCS has in reducing greenhouse (GHG) emissions, the Lehigh Cement, International CCS Knowledge Centre (Knowledge Centre), and Mitsubishi Heavy Industries America (MHIA), part of Mitsubishi Heavy Industries (MHI) Group, are moving forward with the engineering design for this feasibility study of the cement plant's carbon capture system.

https://www.mhi.com/news/21012102.html

PRESS INFORMATION

MHI Completes Installation of CO₂ Capture Unit at Nippon Ekitan's Mizushima Plant -- Recovery Capacity of 283 Metric Tons per Day for New Liquefied Gas Production Facility --

2017-12-18 No.2098

• Recovered CO₂ from Mitsubishi Chemical Corporation's Mizushima Plant used to produce liquefied carbonic acid gas

• Project delivered safely and on-schedule, highlights MHI capabilities

39

https://www.mhi.com/news/1712182098.html

PRESS INFORMATION

Mitsubishi Heavy Industries America Completes Construction of World's Largest Post-Combustion CO2 Capture System for the Petra Nova Carbon Capture Project

2017-01-10 No.2039

Houston, January 10, 2017 - Mitsubishi Heavy Industries America, Inc. (MHIA), a wholly-owned subsidiary of Mitsubishi Heavy Industries, Ltd. of Japan (MHI), has successfully completed construction of the world's largest post-combustion CO2 capture and compression system. Managed and executed in the U.S., the system is based on MHI's proprietary KM CDR Process® and high-performance KS-1™ amine solvent which was jointly developed by MHI and Kansai Electric Power Co. and is used for CO2 absorption and desorption. The system captures CO2 from a 240 MW equivalent coal exhaust slipstream from Unit 8 at NRG Energy Inc.'s (NRG's) W. A. Parish coal-fired generating station in Thompsons, Texas, and is rated at 4,776 metric tons per day of CO2 captured.

https://www.mhi.com/news/1701102039.html

CO₂ Capture Plant

LCO₂ Carriers

Compressor

PRODUCTS

https://www.mhi.com/products/engineering/co 2plants.html

MITSUBISHI HEAVY INDUSTRIES ENGINEERING

https://www.mhi.com/group/mhieng/

PRODUCTS

https://www.mhi.com/group/mhimsb/products

https://www.mhi.com/group/mhimsb/company

https://www.mhi.com/group/mco/

https://www.mhi.com/products/industry/g

📩 MITSUBISHI HEAVY INDUSTRIES COMPRESSOR

PRODUCTS

eared.html

Gas Holder

PRODUCTS

https://www.mhims.com/products/steelstructures/gas/

https://www.mhi-ms.com/

MOVE THE WORLD FORW>RD

