LUNAR CRUISER

Ð

TOYOTA

Advanced R&D and Engineering Company Lunar Exploration Mobility Works Project Toyota Motor Corporation July 21st, 2023

TOYOT

Lunar Cruiser Project Significance and Value

Contribution to the society and to the overall good

Contribute to international cooperation and the Artemis Program

Technology improvement

Take up the challenge of entirely unrelated technology

Human resources development

Help people grow in the toughest conditions they have ever experienced Technology / development

Feedback

Truly circular technology: Powering lifestyles and vehicles with only Sunlight and water

Earth to Moon, Moon to Ear

Apply technologies fine-tuned through lunar rover development on the Moon back on Earth

Realization of a circular economy

<Moon> Develop circular systems using sunlight, water and hydrogen \rightarrow <Earth> Contribute to a carbon-neutral circular economy

eople-centric town and mobility development

<Moon> Augment the value of mobility: Lunar vehicle and lunar community challenges

 \rightarrow <Earth> Develop towns where people live happily; make mobility safe for everyone

Overall Development Roadmap

Core Technology

Regenerative fuel cells (RFC)

Off-road driving performance Automated off-road driving

User experience (UX) Habitability, visibility, operability, etc.

100

Regenerative Fuel Cells (RFC)

1 2 Source : TOYOTA INDUSTRIES CORPORATION website

Next step: Confirm functionality and performance through demonstration tests simulating lunar operations.

Regenerative Fuel Cells (RFC)

Benefits for Earth: Sustainable Hydrogen Society — Towns that Can Be Lived in Forever—

Off-road Driving Performance

Requirements for the Mission/for the Lunar Environment

Safe driving in varied environments with regolith, craters, rocks and slopes

>>>

Issues/Challenges

Development of regolith-compatible tires and driving force control, achieving balance between driving performance and power consumption

<Technology Development>

Off-road driving test vehicle #1

- Two-tonne vehicle capable of off-road driving
- Motion control optimized using four-wheel independent in-wheel motors and steering mechanisms

Metal tires (Bridgestone)

Suspension combining the robust structure cultivated with the Land Cruiser and electrification technology

High-efficiency driving performance/rollover risk prediction in varied environments

Next step: Off-road driving performance development with full-scale off-road driving test vehicle #2

Off-road Driving Performance

Benefits for Earth: Driving Technology—Driving/Automated Driving Over Unfamiliar Terrain

Technology developed for uncharted, roadless Moon terrain, supporting safe driving on all kinds of terrain on Earth

Automated Off-road Driving

<Technology Development>

Requirements for the Mission/for the Lunar Environment

Automated driving on untraveled off-road routes

Issues/Challenges

Lunar surface self-localization, obstacle detection, avoidance route creation

Unvisited place Estimate current position Ascertain surrounding environment Generate route to the goal Navigation technology Obstacle detection using Avoidance route generation (self-localization) LiDAR point clouds **Determine traversable Radio navigation Optimal route search** surfaces Estimate current position using Generate routes for safe driving Identify obstacles and surface \rightarrow Automated driving along a route radio signals gradients \rightarrow Guide for manual driving Star tracker Large Estimate attitude angle from star rock positions **Inertial navigation** Crater Estimate speed, distance traveled from acceleration on three axes Develop and evaluate automated driving functions with full-scale off-road driving test vehicle Next step:

>>>

#2 on lunar mockup test course

Automated Off-road Driving

Benefits for Earth: Driving Technology—Driving/Automated Driving Over Unfamiliar Terrain

Proposed Applications

- High-performance off-road driving control/ rollover prevention
- Support for energy-efficient off-road driving (route generation/driving)

- Checking of disaster circumstances (remote, automated)
- Goods transportation in dangerous areas (remote, automated)

User Experience (UX)

>>> Requirements for the Mission/for the Lunar Environment Issues/Challenges Living on-board (confined space) for one month (1) Large mental strain, affecting crew work (1) efficiency/motivation 100% off-road driving on monochromatic lunar surface (2) (up to 8 hrs/day, 6 days in a row) Unsafe activity as it is hard to make out travel path (2) with eyes only, resulting in operating/judgment errors Safe, dependable **Comfortable living space** <Technology Development> control features Body posture support in Intuitive driving multiple scenarios (e.g. Driving assistance control with a driving, living, sleeping) compact, on a superimposed lightweight display device Design of spacious-Operability verification with a feeling spaces No wall-ceiling boundary driving simulator • Expand areas around lines of vision Habitability verification using full-scale mockup

Next step: Improve rover safety and comfort through verification using mockups and a driving simulator

User Experience (UX)

Benefits for Earth: People-Centric Mobility Design

Provide freedom to people in extreme conditions in a confined space far from Earth, and achieve comfortable, dependable mobility, healthy living with public-private balance, and a moving experience.

Integration of Space and Automotive Technologies

Partnership Between Toyota and Mitsubishi Heavy Industries

